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1. Introduction. Let a(x, ) be a real valued symbol function
belonging to the class S0(R) of HSrmander [2], that is, for any pair
of multi-indices and , we have

sup (1 +[I)II-’/IDD a(x, )[ oo,
where we used usual multi-index notation. As the continuation o the
previous note [1], we treat the Weyl quantization a(x, D) of it, which
is defined as

(1) ( x+y $) ei(X_V).u(y) dy d"(1.1) a(x, D)u(x)= -z a
2

C. Weyl [6], Voros [5], and ttSrmander [3].
Let (,) and denote the inner product and the norm, respec-

tively, in L(Rn). In the previous note, we reported the ollowing

Theorem 1. Let e be an arbitrary small positive number. Then,
using the symbol function a(x, ), we can construct three bounded
linear operators +, - and R in L(R) with the following properties:

1) Both + and - are non-negative symmetric operators.
2) There exists a positive constant C such that we have

(1.2) Re(z+a(x, D)u, u)_-C{lull
(1.3) -Re(-a(x, D)u, u)_-Cllull
for any u e 3(R).

3) + +- I+R, R , and

Let
/(a)={(x, )]a(x, )_>0}

and
-(a) {(x, ) a(x, ) <_ 0}.

We call (a)=/(a) -(a) the characteristic set of a. The aim of
this note is to show the ollowing

Theorem 2. Let a(x, ) and p(x, ) be two real valued functions
in S0(Rn). Suppose the following two conditions hold"

(A) +(a)c+(p), -(a)c-(p).
(B) There exists a positive constant C such that

(1.4) gradxp(x, )]_Clgradxa(x,
(1.5) [gradp(x, )]_C]grada(x,
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at every (x, ) e (a). Let /, - and R be the linear operators con-
structed for a’(x, D) in Theorem 1. Then we have
(1.6) Re(u/p(x, D)u, u)-Cllull
(1.7) --Re(=-p(x, D)u, u)>_ -Cllull for any u e (tn)
and

IIR p(x, D)II<, IIP(x, D)R II<
with some positive constant C.

2. Sketch of the proof of Theorem 2. Lee {Q}7= be the par-
tition of RxR into closed rectangles Q=QxQ in [1]. Let
=diam. o Q and e=diam, of Q. Let (x, ) and (x, ) be unc-
tions as in [1]. At every point w=(x, ) in the interior of the rectan-
gle Q, we assign the quadratic form

g RxR (t, r) g(t,
The correspondence wg, is a discontinuous a-temperate Riemannian
metric in the sense of HSrmander [3]. This metric g is equivalent to
the metric g. in [1]. Following [3], we define

(2.1) gw(t, r)=.]t
and
(2.2) h(w)=7 e;
if w=(x,) is an interior point of Q,. We showed in [1] that
a eS(h-, g) and both sets {?,}, {,} are bounded in S(1, g). (See
HSrmander [3] for the definition of the class S(h-, g) and S(1, g).)

We can prove
Proposition 1. Under the assumptions (A) and (B), the function

p(x, ) belongs to the class S(h-, g), i.e., for any multi-indices a and

fl, we have the estimate

(2.3) [DD p(x, )[<_ C.-"-if (x, ) e 4Q,.
Corresponding to Lemma 2.1 of [1], we can prove

Lemma 2. Let h, ; Let +, 7, R, and , be as in Lemma
2.1 of [1]. Then,

( i ) There exists a positive constant C such that we have

,(2.4) Re(=;p(x, D)(x, D)u, (x, D)u)-CNl(x, D)ul,
(2.5) -Re(u;p(x, D)(x, D)u, (x, D)u) -C Yil(x, D)ull,
.for any u in (Rn).

Sketch of the proof of Lemma 2. In the case (I) of Lemma 1.2

.of [1], we have
<2.6) p(x, )ICN for any (x, ) e 4Q,,
because of assumption (A) and Proposition 1. This proves (2.4) and

(2.5). In the case (II) of Lemma 1.2 of [1], we have
p(x, ) 0 for any (x,
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because o assumption (A). Hence (2.4) and (2.5) hold in this case.
Case (IIi) of Lemma 1.2 of [1] can be treated in the similar manner.

Lemma :. If case (IV) of Lemma 2.1 of [1] holds, then there
exists a non-negative function q(x, ) of (x, ) 4Q such that
(2.7) p(x, )-q(x, )a(x, ) for any (x, ) e 4Q.
For any multi-indices and , we have
(2.8) [DD q(x, )I_C;I"I ;I for (x, ) e 4Q,.

Let z,(x, )=,(x, )/, which we may assume of class C. The
function qz, belongs to S(1, g). We define the operator (qz,)(x, D)
and we have

(p,)(x, D)=(qz,)(x, D)(a,)(x, D)+r(x, D)
where r,=q,a,-(q,)# (a,). Since q,(x, )_0, we can apply the
technique o Nirenberg TrOves (cf. Lemma 3.1 of [4]). Thus, in the
case (IV) of Lamma 1.2, we can prove (2.4) and (2.5).

Similar discussions prove (2.4) and (2.5) in the case (V) of Lemma
2.1 in [1].

Theorem 2 ollows from Lemma 2 if we can prove that the oper-
ators
(2.9) R=. (x, D)z;[o(x, D), p(x, D)]

(2.10) R= (x, D); ?(x, D)(p(x, D)--(p,)’(x, D))

are bounded (cf. (3.7) and (3.8) of [1]). In order to prove the bounded-
heSS of these operators as well as estimates (3.5) and (3.9) of [1], we
use the fundamental estimate o HSrmander, which is implicit in [3].
Let p,(x, ) and p(x, ) be C unctions with compact supports. For
any integer L0 and w=(x, ) e Rn R, we put

L(2.11) p,(.x, )

=p, # p(w)-- <L l (i-a(Dx, De D, D) p,(x, )p(y,

For any w=(x, $) e R R, we put

d,(w) inf g:(w-w’).
w’ 6 (15/8)

Then HSrmander’s estimate can be stated as ollows
Lemma 4. Let p,(x, ) and p(x, ) be C functions. Suppose

that supp p,(7/4)Q, and supp p(7/4)Q. Then, for any non-nega-
tire integers k and l, there exist positive constants C, and M such
that for any w=(x, $) e R R
(2.12) [p,l(w)_C h(w)ffl+d,(w)+d(w))-I lX sup sup lP, lg,(w sup IP, (w)

j+jM L w L w

See [3] or the definition o the seminorm ]Pl(w).
In taking summation with respect to/, we use
Lemma 5. There exists a positive number M such that if kM
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we have
(2.13) , (1 +A+ d(w))- C(1+ A)-
for any positive number A. Here C is independent of A.
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