28. A Note on a Conjecture of K. Harada

By Masao Kiyota*) and Tetsuro Okuyama**)

(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1981)

Let G be a finite group and p be prime number. Let $\left\{\chi_{1}, \cdots, \chi_{s}\right\}$ be the set of all irreducible complex characters of G. For a subset J of the index set $\{1, \cdots, s\}$, we put $\left\{\chi_{J}\right\}=\left\{\chi_{j} ; j \in J\right\}$ and $\rho_{J}=\sum_{j \in J} \chi_{j}(1) \chi_{j}$.

In [1], K. Harada stated the following;
Conjecture A. If $\rho_{J}(x)=0$ for any p-singular element x of G, then $\left\{\chi_{J}\right\}$ is a union of p-blocks of G.

And he proved that if a Sylow-subgroup of G is cyclic, then Conjecture A holds. In this note we prove the conjecture in the following another case.

Theorem. If G is p-solvable, then Conjecture A holds.
Proof. Assume that $\left\{\chi_{J}\right\}$ satisfies the condition of Conjecture A. As in [1], we may assume that $\left\{\chi_{J}\right\} \subseteq B$, for some p-block B of G. So we need to show $\left\{\chi_{J}\right\}=B$ or $\left\{\chi_{J}\right\}=\phi$.

By rearranging the index set if necessary, we may assume that $B=\left\{\chi_{1}, \cdots, \chi_{k}\right\}$. Let $\left\{\varphi_{1}, \cdots, \varphi_{l}\right\}$ be the set of all irreducible Brauer characters in B and $\left\{\Phi_{1}, \cdots, \Phi_{l}\right\}$ be the set of all principal indecomposable characters in B. For $x \in G$, we define $\chi_{B}(x)$ to be the column vector of size k whose i-th component is $\chi_{i}(x)$. For $1 \leq m \leq l$, let \boldsymbol{d}_{m} be the column of size k whose i-th component $d_{i m}$ is the decomposition number of χ_{i} with respect to φ_{m}. Then we have

$$
\chi_{B}(x)=\sum_{m=1}^{l} \boldsymbol{d}_{m} \varphi_{m}(x) \quad \text { for any } p \text {-regular element } x
$$

In particular

$$
\boldsymbol{\chi}_{B}(1)=\sum_{m=1}^{l} \boldsymbol{d}_{m} \varphi_{m}(1)
$$

Let χ_{J} be the column of size k whose i-th component a_{i} is defined as follows. If $i \in J$, then $a_{i}=\chi_{i}(1)$ and $a_{i}=0$ otherwise. At first we show that χ_{J} is a linear combination of $d_{m}, m=1, \cdots, l$. Since ρ_{J} vanishes on all p-singular elements of G, ρ_{J} is an integral linear combination of $\Phi_{m}, m=1, \cdots, l$;

$$
\rho_{J}=\sum_{m} \alpha_{m} \Phi_{m}=\sum_{m} \alpha_{m} \sum_{i} d_{i m} \chi_{i}=\sum_{i}\left(\sum_{m} \alpha_{m} d_{i m}\right) \chi_{i} .
$$

By the linear independence of $\left\{\chi_{i}\right\}$, we obtain

$$
\boldsymbol{\chi}_{J}=\sum_{m} \alpha_{m} \boldsymbol{d}_{m} .
$$

*) Department of Mathematics, University of Tokyo.
**) Department of Mathematics, Osaka City University.

Since G is p-solvable, by Theorem of Fong and Swan ([2, p. 147]) we may assume $\chi_{i}=\varphi_{i}$ on p-regular element of $G(i=1, \cdots, l)$. So the decomposition matrix of B has the form

$$
\left(d_{1}, \cdots, d_{l}\right)=\left(\begin{array}{lll}
1 & & 0 \\
& \ddots & \\
0 & & 1 \\
& * & *
\end{array}\right)
$$

Then we have $\alpha_{m}=0$ or $\varphi_{m}(1)$.
Let $J^{\prime}=\{1, \cdots, k\}-J . \quad$ Since $\left\{\chi_{J}^{\prime}\right\}$ satisfies the condition of Conjecture A, by the same argument we get

$$
\chi_{J}^{\prime}=\sum_{m} \beta_{m} \boldsymbol{d}_{m}, \quad \beta_{m}=0 \quad \text { or } \quad \varphi_{m}(1) .
$$

Clearly we have $\left\{m ; \beta_{m} \neq 0\right\} \cap\left\{m ; \alpha_{m} \neq 0\right\}=\phi . \quad$ By the definition of blocks, we get $\left\{m ; \beta_{m} \neq 0\right\}=\phi$ or $\left\{m ; \alpha_{m} \neq 0\right\}=\phi$. Hence $\chi_{J}=\sum_{m} \varphi_{m}(1) d_{m}$ or O, this completes the proof of the theorem.

References

[1] K. Harada: A conjecture and a theorem on blocks of modular representation (preprint).
[2] J. P. Serre: Représentations linéaires des groupes finis. Hermann, Paris (1971).

