28. A Note on a Conjecture of K. Harada

By Masao Kiyota*) and Tetsuro Okuyama**)

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1981)

Let G be a finite group and p be prime number. Let $\{\chi_1, \dots, \chi_s\}$ be the set of all irreducible complex characters of G. For a subset J of the index set $\{1, \dots, s\}$, we put $\{\chi_J\} = \{\chi_J; j \in J\}$ and $\rho_J = \sum_{j \in J} \chi_j(1)\chi_j$.

In [1], K. Harada stated the following;

Conjecture A. If $\rho_J(x)=0$ for any p-singular element x of G, then $\{\chi_j\}$ is a union of p-blocks of G.

And he proved that if a Sylow-subgroup of G is cyclic, then Conjecture A holds. In this note we prove the conjecture in the following another case.

Theorem. If G is p-solvable, then Conjecture A holds.

Proof. Assume that $\{\chi_J\}$ satisfies the condition of Conjecture A. As in [1], we may assume that $\{\chi_J\}\subseteq B$, for some p-block B of G. So we need to show $\{\chi_J\}=B$ or $\{\chi_J\}=\phi$.

By rearranging the index set if necessary, we may assume that $B = \{\chi_1, \dots, \chi_k\}$. Let $\{\varphi_1, \dots, \varphi_l\}$ be the set of all irreducible Brauer characters in B and $\{\Phi_1, \dots, \Phi_l\}$ be the set of all principal indecomposable characters in B. For $x \in G$, we define $\mathcal{X}_B(x)$ to be the column vector of size k whose i-th component is $\chi_l(x)$. For $1 \le m \le l$, let d_m be the column of size k whose i-th component d_{im} is the decomposition number of χ_l with respect to φ_m . Then we have

$$\chi_B(x) = \sum_{m=1}^t d_m \varphi_m(x)$$
 for any p-regular element x .

In particular

$$\chi_B(1) = \sum_{m=1}^l d_m \varphi_m(1)$$
.

Let χ_J be the column of size k whose i-th component a_i is defined as follows. If $i \in J$, then $a_i = \chi_i(1)$ and $a_i = 0$ otherwise. At first we show that χ_J is a linear combination of d_m , $m = 1, \dots, l$. Since ρ_J vanishes on all p-singular elements of G, ρ_J is an integral linear combination of Φ_m , $m = 1, \dots, l$;

$$ho_{J} = \sum_{m} \alpha_{m} \Phi_{m} = \sum_{m} \alpha_{m} \sum_{i} d_{im} \chi_{i} = \sum_{i} (\sum_{m} \alpha_{m} d_{im}) \chi_{i}.$$

By the linear independence of $\{\chi_i\}$, we obtain

$$\chi_J = \sum_m \alpha_m \boldsymbol{d}_m$$
.

^{*)} Department of Mathematics, University of Tokyo.

^{**} Department of Mathematics, Osaka City University.

Since G is p-solvable, by Theorem of Fong and Swan ([2, p. 147]) we may assume $\chi_i = \varphi_i$ on p-regular element of G ($i=1, \dots, l$). So the decomposition matrix of B has the form

$$(d_1, \cdots, d_l) = \begin{pmatrix} 1 & 0 \\ & \cdot \\ 0 & 1 \\ & * & * \end{pmatrix}.$$

Then we have $\alpha_m = 0$ or $\varphi_m(1)$.

Let $J' = \{1, \dots, k\} - J$. Since $\{\chi'_J\}$ satisfies the condition of Conjecture A, by the same argument we get

$$\chi_J' = \sum_{m} \beta_m d_m$$
, $\beta_m = 0$ or $\varphi_m(1)$.

Clearly we have $\{m; \beta_m \neq 0\} \cap \{m; \alpha_m \neq 0\} = \phi$. By the definition of blocks, we get $\{m; \beta_m \neq 0\} = \phi$ or $\{m; \alpha_m \neq 0\} = \phi$. Hence $\mathcal{X}_J = \sum_m \varphi_m(1) d_m$ or O, this completes the proof of the theorem.

References

- [1] K. Harada: A conjecture and a theorem on blocks of modular representation (preprint).
- [2] J. P. Serre: Représentations linéaires des groupes finis. Hermann, Paris (1971).