1. An Approximate Positive Part of Essentially
 Self-Adjoint Pseudo-Differential Operators. I

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1981)

§0. Introduction. Let $\alpha(x, \xi)$ be a real valued symbol function belonging to the class $S_{1,0}^{1}\left(\mathrm{R}^{n}\right)$ of Hörmander [6], that is, for any pair of multi-indices α and β, we have

$$
\sup _{x, \xi}\left(1+\mid \xi^{2}\right)^{2(|\beta|-1) / 2}\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right|<\infty,
$$

where we used usual multi-index notation. Let $a^{w}(x, D)$ denote its Weyl quantization, which is defined as

$$
a^{w}(x, D) u(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} a\left(\frac{x+y}{2}, \xi\right) e^{i(x-y) \cdot \xi} u(y) d y d \xi
$$

for any $u \in \mathcal{S}\left(\mathrm{R}^{n}\right)$. Cf. Weyl [11], Voros [10] and Hörmander [8].
Since $a(x, \xi)$ is real valued, the operator $a^{w}(x, D)$ is essentially self-adjoint in the Hilbert space $L^{2}\left(\mathrm{R}^{n}\right)$. We shall denote scalar product and norm in $L^{2}\left(\mathbf{R}^{n}\right)$ by (,) and $\|\|$, respectively. The main result in this note is the following

Theorem. Let $a(x, \xi)$ be as above. Let ε be an arbitrary small positive number. Using the symbol function $\alpha(x, \xi)$, we can construct three bounded linear operators π^{+}, π^{-}and R in $L^{2}\left(\mathbf{R}^{n}\right)$ with the following properties;

1) π^{+}and π^{-}are non-negative symmetric operators.
2) There exists a positive constant C such that we have

$$
\operatorname{Re}\left(\pi^{+} a^{w}(x, D) u, u\right) \geq-C\|u\|^{2},
$$

and

$$
-\operatorname{Re}\left(\pi^{-} \alpha^{w}(x, D) u, u\right) \geq-C\|u\|^{2}
$$

for any $u \in \mathcal{S}\left(\mathrm{R}^{n}\right)$.
3)

$$
\pi^{+}+\pi^{-}=I+R,
$$

where R satisfies the estimate $\|R\|<\varepsilon$ and $\left\|a^{w}(x, D) R\right\|+\left\|R a^{w}(x, D)\right\|<\infty$.
All these operators π^{+}, π^{-}and R can be written as integral operators.

If $a(x, \xi) \geq 0$ for any $(x, \xi) \in \mathrm{R}^{2 n}$, our construction shows that $\pi^{+}=I$ and $\pi^{-}=R=0$. Thus, in this case our theorem is nothing but the celebrated sharp Gårding inequality. In this case, sharper results are known in [9], [8] and in [4]. However, if $a(x, \xi)$ changes sign, very little was done (cf. [5]) and our result seems new.

It is not clear to the author whether the above result has relation-
ship to a deeper problem:
"To what extent can one know spectral properties of $a^{w}(x, D)$ from local behaviours of its symbol function $a(x, \xi)$?"

Acknowledgements. The problem treated in this note was proposed by L. Nirenberg. The author wishes to express his sincere gratitude to Prof. L. Nirenberg for that.
§ 1. Micro-localization. We use a modification of the ingenious partition of unity used by Beals-Fefferman [2]. We partition $\mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$ into rectangles $Q_{j}^{1}=Q_{x j}^{1} \times Q_{\xi j}^{1}, j=1,2, \cdots$, obtained by partitioning the x-space into cubes of diameter 1 and partitioning the ξ-space into cubes of the diameter satisfying

$$
\begin{equation*}
16^{-1}(N+|\xi|) \leq \operatorname{diam} . Q_{\xi j}^{1} \leq 8^{-1}(N+|\xi|) \tag{1.1}
\end{equation*}
$$

for all $(x, \xi) \in Q_{j}^{1}$. Here N is a large positive number to be fixed later. For any $r>0, r Q_{j}^{1}$ denotes the rectangle r-homothetic to Q_{j}^{1} with the same center as Q_{j}^{1}.

We retain the rectangle Q_{j}^{1} which satisfies any one of the following conditions;

$$
\begin{gather*}
a(x, \xi) \text { has constant sign if }(x, \xi) \in 4 Q_{j}^{1} . \tag{1.2}\\
\left|\frac{\partial}{\partial \xi_{k}} a(x, \xi)\right| \geq \text { diam. of } Q_{x j}^{1} \text { for }(x, \xi) \in 4 Q_{j}^{1} . \tag{1.3}
\end{gather*}
$$

$$
\begin{equation*}
\left|(1+|\xi|)^{-1} \frac{\partial}{\partial x_{k}} a(x, \xi)\right| \geq 2 \text { diam. of } Q_{x j}^{1} \text { for any }(x, \xi) \in 4 Q_{j}^{1} . \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{diam} . Q_{x j}^{1}<2 N^{1 / 2}(N+|\xi|)^{-1 / 2} \text { for some }(x, \xi) \in Q_{j}^{1} . \tag{1.5}
\end{equation*}
$$

If all these conditions fail for Q_{j}^{1}, we partition it into $2^{2 n}$ congruent subrectangles. We denote the new rectangles $\left\{Q_{j}^{2}\right\}_{j}$. We retain those new rectangles which satisfy any of conditions (1.2)-(1.5) with Q_{j}^{1} replaced by Q_{j}^{2}. We subdivide the rest. We continue this process. On any compact subset of $\mathrm{R}_{x}^{n} \times \mathrm{R}_{\xi}^{n}$, this process ends after finite number of steps because of (1.5). When all these steps of iterative construction are complete, we relabel retained rectangles as $Q_{1}, Q_{2}, \cdots, Q_{\nu}=Q_{x \nu}$ $\times Q_{\xi}, \cdots$. These retained rectangles are a partition of $\mathrm{R}_{x}^{n} \times \mathrm{R}_{\xi}^{n}$ into closed sets with disjoint interiors. Let δ_{ν} denote the diameter of $Q_{x \nu}$ and ε_{ν} denote the diameter of $Q_{\xi \nu}$. In the following, we shall denote by C various positive constants independent of N, ν and h.

Proposition 1.1. If $2 Q_{\mu} \cap 2 Q_{\nu} \neq \phi$, we have

$$
8^{-1} \delta_{\mu} \leq \delta_{\nu} \leq 8 \delta_{\mu} \quad \text { and } \quad 2^{-5} \varepsilon_{\mu}<\varepsilon_{\nu}<2^{5} \varepsilon_{\mu} .
$$

Lemma 1.2. Let Q_{μ} be a rectangle. Then one of the following cases holds.
(I) There exists a positive constant C such that

$$
\begin{equation*}
|a(x, \xi)| \leq C N^{2} \quad \text { for any } \quad(x, \xi) \in 4 Q_{\mu} . \tag{1.6}
\end{equation*}
$$

(II) For any $(x, \xi) \in 4 Q_{\mu}, \quad|\xi| \geq N / 2$ and $a(x, \xi) \geq 0$.
(III) For any $(x, \xi) \in 4 Q_{\mu}, \quad|\xi| \geq N / 2$ and $a(x, \xi) \leq 0$.
(IV) $)_{k}$ For any $(x, \xi) \in 4 Q_{\mu},|\xi| \geq N / 2$ and $\left|\frac{\partial}{\partial \xi_{k}} a(x, \xi)\right| \geq \delta_{\mu}$.
$(\mathrm{V})_{k}$ For any $(x, \xi) \in 4 Q_{\mu}$,

$$
|\xi| \geq N / 2 \quad \text { and } \quad\left|\frac{\partial}{\partial x_{k}} a(x, \xi)\right|>\delta_{\mu}(N+|\xi|) .
$$

Let $\left\{\varphi_{\mu}(x, \xi)\right\}_{\mu}$ be non-negative C^{∞} functions such that $\sum_{\mu} \varphi_{\mu}(x, \xi)^{2}$ $\equiv 1$ and $\operatorname{supp} \varphi_{\mu} \subset 5 / 4 Q_{\mu}$. Let ψ_{μ} be a non-negative C^{∞} function such that $\psi_{\mu}(x, \xi)=1$ on $11 / 8 Q_{\mu}$ and $\psi_{\mu}(x, \xi)=0$ outside $3 / 2 Q_{\mu}$. We put $a_{\mu}(x, \xi)=\alpha(x, \xi) \psi_{\mu}(x, \xi)$. We have the following estimates.

Proposition 1.3. For any multi-indices α and β, we have

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} \varphi_{\mu}(x, \xi)\right| \leq C_{\alpha \beta} \delta_{\mu}^{-|\alpha|} \varepsilon_{\mu}^{-|\beta|} . \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha \beta} N^{\beta^{*}} \delta_{\mu}^{1-|\alpha|} \varepsilon_{\mu}^{1-|\beta|} \text { if }(x, \xi) \in 4 Q_{\mu} . \tag{1.8}
\end{equation*}
$$

$$
\text { where } \beta^{*}=\max (1,|\beta|-1)
$$

If $\left|\xi^{\mu}\right| \geq 2 N$ at the center $\left(x^{\mu}, \xi^{\mu}\right)$ of Q_{μ}, we have

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha \beta} \delta_{\mu}^{1-|\alpha|} \varepsilon_{\mu}^{1-|\beta|} \text { for }(x, \xi) \in 4 Q_{\mu} \tag{1.9}
\end{equation*}
$$

§2. Solutions to the micro-localized problem. In each of cases (I)-(V) ${ }_{k}$ of Lemma 1.2, we can prove

Lemma 2.1. Let $\delta_{\mu}^{-1} \varepsilon_{\mu}^{-1}=h_{\mu}$. Then, for any μ, we can construct two symmetric bounded linear operators π^{+}and π^{-}such that
(i) There exists a positive constant C such that

$$
\begin{equation*}
\left\|\pi_{\mu}^{+}\right\|+\left\|\pi_{\mu}^{-}\right\| \leq C \tag{2.1}
\end{equation*}
$$

(ii) There exists a positive constant C such that we have
(2.2) $\quad \operatorname{Re}\left(\pi_{\mu}^{+} a_{\mu}^{w}(x, D) \varphi_{\mu}^{w}(x, D) u, \varphi_{\mu}^{w}(x, D) u\right) \geq-C N^{2}\left\|\varphi_{\mu}^{w}(x, D) u\right\|^{2}$,
(2.3) $\quad-\operatorname{Re}\left(\pi_{\mu}^{-} a_{\mu}^{w}(x, D) \varphi_{\mu}^{w}(x, D) u, \varphi_{\mu}^{w}(x, D) u\right) \geq-C N^{2}\left\|\varphi_{\mu}^{w}(x, D) u\right\|^{2}$.
(iii) Either $\pi_{\mu}^{+}+\pi_{\mu}^{-}=I$ or $\pi_{\mu}^{+}+\pi_{\mu}^{-}=\phi_{\mu}^{w}(x, D)+h_{\mu}^{2} R_{\mu}$, where R_{μ} is an operator with $\left\|R_{\mu}\right\|<C$ and $\phi_{\mu} \in C_{0}^{\infty}\left(11 / 8 Q_{\mu}\right)$ with $\phi_{\mu}(x, \xi)=1$ on $5 / 4 Q_{\mu}$.

Sketch of the proof of Lemma 2.1. In the case (I) of Lemma 1.2, we put $\pi_{\mu}^{+}=I$ and $\pi_{\mu}^{-}=0$. Then (2.2) and (2.3) hold.

In the case (II) of Lemma 1.2, we put $\pi_{\mu}^{+}=I$ and $\pi_{\mu}^{-}=0$. In the case (III) of Lemma 1.2, we put $\pi_{\mu}^{+}=0$ and $\pi_{\mu}^{-}=I$. In the case (IV) $)_{k}$ of Lemma 1.2, proof of Lemma 2.1 is rather complicated. We use the unitary operator S_{μ} defined by $S_{\mu} u(x)=\delta_{\mu}^{-n / 2} u\left(\delta_{\mu}^{-1}\left(x-x^{\mu}\right)\right) \exp i \xi^{\mu} \cdot\left(x-x^{\mu}\right)$, where (x^{μ}, ξ^{μ}) is the center of Q_{μ}. Then we have

$$
S_{\mu}^{-1} a^{w}(x, D) S_{\mu}=a^{\# v}\left(x, h_{\mu} D\right),
$$

here $a_{\mu}^{\#}(x, \xi)=a\left(x^{\mu}+\delta_{\mu} x, \xi^{\mu}+\varepsilon_{\mu} \xi\right)$ and for any $h>0$

$$
a_{\mu}^{\#}(x, h D) u(x)=\left(\frac{1}{2 \pi h}\right)^{n} \iint a_{\mu}^{\#}(x, \xi) e^{i \hbar-1(x-y) \cdot \xi} u(y) d y d \xi .
$$

We define $\varphi_{\mu}^{\#}(x, \xi)$ and $\phi_{\mu}^{\#}(x, \xi)$ in the similar manner and we put $a \phi_{\mu}^{\sharp}(x, \xi)=a_{\mu}^{\#}(x, \xi) \phi_{\mu}^{\sharp}(x, \xi)$. We put $Q_{0}=\left\{(x, \xi)| | x_{j}\left|\leq 1 / n^{1 / 2},\left|\xi_{j}\right| \leq 1 / n^{1 / 2}\right.\right.$, $j=1,2, \cdots, n\}$. Then, $\left(x^{\mu}+\delta_{\mu} x, \xi^{\mu}+\varepsilon_{\mu} \xi\right) \in r Q$ if $(x, \xi) \in r Q_{0}$.

Lemma 2.2. Supp $\varphi_{\mu}^{\#} \subset 5 / 4 Q_{0}$ and $\operatorname{supp} \psi_{\mu}^{*} \in 3 / 2 Q_{0}$. For any multiindices α and β, we have the estimates;

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} a^{\sharp}(x, \xi)\right| \leq h_{\mu}^{-1} C_{\alpha \beta} \quad \text { if }(x, \xi) \in 4 Q_{0}
$$

and
$\left|D_{x}^{\alpha} D_{\xi}^{\beta} \varphi_{\mu}^{\#}(x, \xi)\right|+\mid D_{x}^{\alpha} D_{\xi}^{\beta} \psi_{\mu}^{\#}(x, \xi) \leq C_{\alpha \beta} \quad$ for any $(x, \xi) \in \mathrm{R}^{n} \times \mathrm{R}^{n}$.
We put $b_{\mu}(x, \xi)=h_{\mu} a_{\mu}^{\#}(x, \xi)$. In the case of (IV) $)_{k}$ of Lemma 1.2, we have $\left|\left(\partial / \partial \xi_{k}\right) b(x, \xi)\right| \geq 1$ for any $(x, \xi) \in 4 Q_{0}$. This means that the Hamiltonian vector field of $b(x, \xi)$ has non-zero projection to the x space R_{x}^{n}. Using this, we can find local (not necessarily homogeneous) canonical transformation χ such that $b \cdot \chi(y, \eta)=\eta_{k}$. We can find an oscillatory integral operator $T(h)$;

$$
T(h) u(x)=\left(\frac{1}{2 \pi h}\right)^{n} \int_{\mathrm{R}^{n}} \int_{\mathrm{R}^{n}} g(x, \eta) \rho(x, \eta) e^{i h-1(S(x, \eta)-y \cdot \eta)} u(y) d y d \eta
$$

where $S(x, \eta)$ is a generating function of χ,

$$
g(x, \eta)=\left|\operatorname{det} \frac{\partial^{2}}{\partial x \partial \eta} S(x, \eta)\right|^{-1 / 2}
$$

and $\rho(x, \eta)$ is a cutting function (cf. [1]).
Lemma 2.3. For any $h>0$,

$$
\begin{gathered}
T(h)^{*}\left(b_{\mu} \psi_{\mu}^{*}\right)^{w}(x, h D)-h D_{k} T(h)^{*}=h R_{1}(h) . \\
T(h) T(h)^{*}=\left(\rho^{2}\right)^{w}(x, h D)+h^{2} R_{2}(h) .
\end{gathered}
$$

There exists a positive constant C such that

$$
\left\|R_{1}(h)\right\|+\left\|R_{2}(h)\right\| \leq C
$$

The operator $h D_{k}=h(1 / i)\left(\partial / \partial x_{k}\right)$ is easily decomposed into positive part and negative part if we use the projection operators $Y^{ \pm}\left(h D_{k}\right)$;

$$
Y^{ \pm}\left(h D_{k}\right) u(x)=\left(\frac{1}{2 \pi h}\right)^{n} \int_{\mathrm{R}^{n}} \int_{\mathrm{R}^{n}} Y^{ \pm}\left(\eta_{k}\right) e^{i \hbar-1(x-y) \cdot \eta} u(y) d y d \eta
$$

where $Y^{+}(t)=1$ for $t \geq 0$ and $Y^{+}(t)=0$ for $t<0$ and $Y^{-}(t)=1-Y^{+}(t)$. Although the set $\{(x, \partial S(x, \eta) / \partial \eta) \mid \rho(x, \eta)=1\}$ is very small, a bounded number of such sets cover $5 / 4 Q_{0}$ which contains supp $\varphi_{\mu}^{\#}$. Thus we can prove

Lemma 2.4. Assume that (IV) ${ }_{k}$ of Lemma 1.2 holds. Then, we can construct operators $\hat{\pi}_{\mu}^{+}, \hat{\pi}_{\mu}^{-}$and $\hat{R}_{\mu}\left(h_{\mu}\right)$ and a function $\hat{\phi}_{\mu}(x, \xi)_{-}^{\top}$ such that
(i) $\hat{\pi}_{\mu}^{ \pm}$are non-negative symmetric operators. There exists a positive constant C such that $\left\|\hat{\pi}_{\mu}^{+}\right\|+\left\|\hat{\pi}_{\mu}^{-}\right\|+\left\|R\left(h_{\mu}\right)\right\| \leq C$.

$$
\begin{align*}
& \operatorname{Re}\left(\hat{\pi}_{\mu}^{+}\left(b \psi_{\mu}^{*}\right)^{w}\left(x, h_{\mu} D\right) u, u\right) \geq-C h_{\mu}\|u\|^{2}, \tag{ii}\\
& -\operatorname{Re}\left(\hat{\pi}_{\mu}^{-}\left(b \psi_{\mu}^{*}\right)^{w}\left(x, h_{\mu} D\right) u, u\right) \geq-C h_{\mu}\|u\|^{2} . \\
& \hat{\pi}_{\mu}^{+}+\hat{\pi}_{\mu}^{-}=\tilde{\phi}\left(x, h_{\mu} D\right)+h_{\mu}^{2} \tilde{R}_{\mu}(h), \\
& \tilde{\phi}_{\mu}(x, \xi)=1 \text { on } 5 / 4 Q_{0} \text { and supp } \tilde{\phi}_{\mu} \subset 11 / 8 Q_{0} .
\end{align*}
$$

If we put $\pi_{\mu}^{ \pm}=S_{\mu} \hat{\pi}_{\mu}^{ \pm} S_{\mu}^{-1}$, we can prove that Lemma 2.4 implies Lemma 2.1 in the case of (IV) ${ }_{k}$ of Lemma 1.2.

To prove Lemma 2.1 in the case (V) $)_{k}$ of Lemma 1.2, we use Fourier transform with a parameter $h>0$;

$$
F_{h} u(y)=\left(\frac{1}{2 \pi h}\right)^{n} \int_{\mathrm{R}^{n}} e^{-i \hbar-1 y x} u(x) d x .
$$

We have

$$
F_{h}^{-1} b^{w}(x, h D) F_{h}=p^{w}(y, h D),
$$

where $p(y, \eta)=b_{\mu}(\eta,-y)$. Condition (V) ${ }_{k}$ implies that $\left|\partial p(y, \eta) / \partial \eta_{k}\right| \geq 1$ for any $(y, \eta) \in 4 Q_{0}$. Thus we can apply Lemma 2.4 with b replaced by p. Since F_{h} is unitary and the Legendre transform $\chi_{L}:(y, \eta) \rightarrow(\eta$, $-y$) preserves $r Q_{0}$ for any $r>0$, Lemma 2.1 can be proved in the case $(\mathrm{V})_{k}$ of Lemma 1.2.
§3. Patching of microlocal solutions. Collecting microlocal solution $\pi_{\mu}^{ \pm}$in Lemma 2.1, we prove our main theorem. We put

$$
\begin{equation*}
\pi^{ \pm}=\sum_{\mu} \varphi_{\mu}^{w}(x, D) \pi_{\mu}^{ \pm} \varphi_{\mu}^{w}(x, D) . \tag{3.1}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\pi^{+}+\pi^{-}=I+J_{1}+J_{2}, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}=\sum_{\mu}\left\{\varphi_{\mu}^{w}(x, D) \phi_{\mu}^{w}(x, D) \varphi_{\mu}^{w}(x, D)-\left(\varphi_{\mu}^{2}\right)^{w}(x, D)\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{2}=\sum_{\mu} h_{\mu}^{2} \varphi_{\mu}^{w}(x, D) R_{\mu} \varphi_{\mu}^{w}(x, D) \tag{3.4}
\end{equation*}
$$

We can prove that

$$
\begin{equation*}
\left\|J_{1}\right\|+\left\|J_{2}\right\| \leq C N^{-1} \tag{3.5}
\end{equation*}
$$

Thus we take N so large that $C N^{-1}<\varepsilon$ and we fix N. This proves assertion 3) of Theorem. We have

$$
\begin{equation*}
\pi^{+} a^{w}(x, D)=\sum_{\mu} \varphi_{\mu}^{w}(x, D) \pi_{\mu}^{+} a^{w}(x, D) \varphi_{\mu}^{w}(x, D)+R_{1}+R_{2} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gather*}
R_{1}=\sum_{\mu} \varphi_{\mu}^{w}(x, D) \pi_{\mu}^{+}\left[\varphi_{\mu}^{w}(x, D), a_{\mu}^{w}(x, D)\right] \tag{3.7}\\
R_{2}=\varphi_{\mu}^{w}(x, D) \pi_{\mu}^{+} \varphi_{\mu}^{w}(x, D)\left(a^{w}(x, D)-a_{\mu}^{w}(x, D)\right) \tag{3.8}
\end{gather*}
$$

Since Lemma 2.1 holds, we have only to prove that

$$
\begin{equation*}
\left\|R_{1}\right\|+\left\|R_{2}\right\| \leq C \tag{3.9}
\end{equation*}
$$

We prove estimates (3.5) and (3.9) by using Hörmander's theory [8]. To do so we introduce a Riemannian metric on $\mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$.

Definition 3.1. Let $w=(x, \xi) \in \mathbf{R}^{n} \times \mathbf{R}^{n}$. We define a quadratic form g_{w} of $(t, \tau) \in \mathrm{R}^{n} \times \mathrm{R}^{n}$,

$$
g_{w}(t, \tau)=\sum_{\mu} \varphi_{\mu}(x, \xi)^{2}\left\{\delta_{\mu}^{-2}|t|^{2}+\varepsilon_{\mu}^{-2}|\tau|^{2}\right\} .
$$

This is a σ-temperate Riemannian metric on $\mathbf{R}^{n} \times \mathbf{R}^{n}$ in the sense of Hörmander [8].

Lemma 3.2. There exists a constant $C>0$ such that for any points $w=(x, \xi)$ and $w^{\prime}=(y, \eta)$;

$$
g_{w}^{\sigma}(t, \tau) \leq C g_{w^{\prime}}^{\sigma}(t, \tau) \quad\left(1+g_{w^{\prime}}^{\sigma}(x-y, \xi-\eta)\right)^{3} .
$$

References

[1] Asada, K., and Fujiwara, D.: On some oscillatory integral transformation in $L^{2}\left(R^{n}\right)$. Jap. J. Math., 4, 299-361 (1978).
[2] Beals, R., and Fefferman, C.: On local solvability of linear partial differential equations. Ann. of Math., 27, 1-27 (1974).
[3] Calderón, A. P., and Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. U.S.A., 69, 1185-1187 (1971).
[4] Fefferman, C., and Phong, D. H.: On positivity of pseudo-differential operators. ibid., 75, 4673-4674 (1978).
[5] Fujiwara, D.: An approximate positive part of a self-adjoint pseudodifferential operator. I. Osaka J. Math., 11, 265-281 (1974) ; ditto. II. ibid., 11, 283-293 (1974).
[6] Hörmander, L.: Pseudo-differential operators and hypo-elliptic equations. Proc. Symp. Pure Math., 10, 118-196 (1966).
[7] -: Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83, 129-209 (1966).
[8] -: The Weyl calculus of pseudo-differential operators. Comm. Pure Appl. Math., 32, 359-443 (1979).
[9] Melin, A.: Lower bounds for pseudo-differential operators. Ark. Mat., 9, 117-140 (1971).
[10] Voros, A.: An algebra of pseudo-differential operators and the asymptotics of quantum mechanics. J. Funct. Anal., 29, 104-132 (1978).
[11] Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover (1950).

