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Cauchy Problem for Hyperbolic Differential Operators
with Double Characteristic Roots
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(Communicated by KSsaku YOSIDA, M. g. A., Feb. 12, 1980)

1. Introduction. Let us consider the Cauchy problem for hy-
perbolic differential operators with double characteristic roots. Al-
ready we have some sufficient conditions for this Cauchy problem to
be well-posed in C-class, cf. [5]. On the other hand, we also know
that without such a condition, this Cauchy problem is well-posed in -Gevrey class, 1<_2, cf. [2], [3].

In this paper, we introduce a number *e [2, c] which shall be
determined according to a given operator and show that if 1<_*,
the above Cauchy problem is well-posed in -Gevrey class.

2. Definitions. We consider the Cauchy problem- aDDu=f(x,
(C)

P[u] D?u+
=0 .t- t), (x, t) e 9

Du],=o=(x), ]=0, 1, ..., m--1
where =RX [0, T], T>0, D,=--i, D=--i

3

Ox
(’ ,n)

are non-negative integers, D=D?...D". Let P(x, t; D,Dt) be the
homogeneous part of degree ] in (D, D) o P(x, t D, D).

We say that a(x, t) belongs to a class y(’), (x) to F(’) and +(x, t) to
F(’) r=O, 1, ..., , ff there exist constants p>O and CO aeeording
to a(x, t), (x) and +(x, t) respectively such that

]DD{a(x, t)[ C (]+]) (x, t) e 9, for any j and v,

for any v,

O<<T, for any ]r and any v,

respectively, were denoees e B-norm.
We also say hat h(x, t, ) belongs to [ ( )] if 1) h(x, t, ) is ho-

mogeneous o degree r in , and 2) there exists a constant pO such
that or anyk and any a, fl,

]DtDDh(x, t,) p
where C. is a constant independent of ft.. Result. We assume the following hree conditions’
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i) The coefficients a(x, t) belong to
ii) The characteristic polynomial P(x, t , ) can be decomposed

a8

P(x, t; , )= l-I (r-2(x, t, )) I (r-/(x, t, )), 2sm,= =
where , Z are real-valued and belong to -[(x)]. Moreover
(}=,...,_ and {Z}=,...,, are distinct in each group, but may coin-
cide only with somewhere in 9 R{0}, ]= 1, ., s.

iii) For each ] (l]gs), there exists a(x, t, )e [0()] such that
(c-Z, c-}=t- (Z-)a, where ( } denotes the Poisson’s bracket.

Now, let L(x, t, ) be Levi’s functions, namely

( +s) ]=l,...,s,L(x, t, )=P_ x, t, ,
2

where

P-I= ,DtP +OeDP--P_ -- Or’ ="We define the numbers {&, a}=,...,, as ollows"

&= inf {p_> 1; t"L(x, t, #)e 0[3-(x)]}.
If the set of p in the right-hand term is empty, then p=

a=sup {a0; t-"L(x, t, ) e [3-(x)]}.
The set of a in the right-hand term is not empty. I this set coincides
with R ={a; 0Ea<}, then

Let x* be the number defined by

x*= rain 2p+
=,...,

where x*=2 i &= or some ] (even though
p= 1 or every ]. Then the following theorem holds"

Theorem. Assume the conditions i)-iii). Then, if lx<x*,
the Cauchy problem (C) is ( well-posed, that is, for any
]=0, 1, ..., m-1, and for any f e F(, there exists a unique solution
u(x, t) e F+( of the Cauchy problem (C) r=0, 1, ...,

4. Remarks. 1) I 15x<2, the consequence of the theorem
remains true without the assumption iii), whatever the lower order
terms o P may be, c. [2].

02) If tL(-a)-*e [3 -(x)] or every ], then x*=. In this
case, even if x=x*=, the Cauchy problem (C) is F well-posed.
Here F()=, r(=)= and [3 ()] is a usual symbol class
o pseudo-differential operators. Cf. [5].

3) Assuming the conditions i)-ii), consider the case" For every
] (l]Es), there exist 0>0 and a(x, t, #) e [3 (x)] such that

Z-a=t"3, in]a(x,t,#)[>0, (x,t)eg, #I=1.
In this case, the condition iii) is automatically satisfied and, whatever
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the lower order terms o P may be, p_O=max{1,0}. Hence, i

1* min 20. the Cauchy problem (C) is F() well-posed,
--,-.., .--i

whatever the lower order terms of P may be.
We will give the proo o the theorem in our 0rthcoming paper.
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