110. Modular Representations of p-Groups with Regular Rings of Invariants

By Haruhisa NAKAJIMA

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1980)

- § 1. Introduction. Let V be an n-dimensional vector space over a field k of characteristic p and G a finite subgroup of GL(V). Then G acts linearly on the symmetric algebra R of V. We denote by R^G the subring of R consisting of all invariant polynomials under this action of G. The following theorem is well known.
- (1.1) Theorem (Chevalley-Serre, cf. [2], [3], [5]). Suppose that p=0 or (|G|, p)=1. Then R^G is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V) (an element σ of GL(V) is said to be a pseudo-reflection if rank $(\sigma-1)\leq 1$).

Now we assume that p>0 and that the order of G is divisible by p. Serre obtained a necessary condition for R^g to be a polynomial ring as follows.

(1.2) Theorem (Serre, cf. [2], [5]). If R^a is a polynomial ring, then G is generated by pseudo-reflections.

However the converse of (1.2) is not always true. For example $R^{o_n(F_q)}$ $(n \ge 4, p \text{ odd})$ are not polynomial rings, where $O_n(F_q)$ are orthogonal subgroups of GL(V) of dimension n defined over the subfield F_q of k consisting of q elements.

Hereafter we suppose that k is the prime field of characteristic p(>0) and that G is a p-subgroup of GL(V).

The purpose of this note is to announce our results on rings of invariants of p-groups. We can completely determine p-groups G such that R^g are polynomial rings. The main result is

- (1.3) Theorem. The following statements on a pair of V and G are equivalent:
 - (1) R^a is a polynomial ring.
 - (2) There is a k-basis $\{X_1, \dots, X_n\}$ of V with the equality

$$\prod_{i=1}^{n} |GX_i| = |G|$$

such that all $\bigoplus_{i=1}^{j} kX_i$ $(1 \leq j \leq n)$ are kG-submodules of V.

In [1] it has been shown that if G is a p-Sylow subgroup of GL(V), R^{a} is a polynomial ring.

§ 2. Preliminaries. We need some lemmas on invariant subrings of polynomial rings:

(2.1) Lemma. Let N be a subgroup of GL(V) and let H be the inertia group of a prime ideal $\mathfrak p$ of R under the natural action of N. If R^N is a polynomial ring, then R^H is also a polynomial ring.

Proof. It suffices to treat the case where \mathfrak{p} is generated by $\mathfrak{p} \cap V$.

Then we easily see that

$$\left[\bar{k} \underset{\scriptscriptstyle k}{\bigotimes} R^{\scriptscriptstyle H}\right]_{\scriptscriptstyle{\mathfrak{m}_{1}}} \cong \left[\bar{k} \underset{\scriptscriptstyle k}{\bigotimes} R^{\scriptscriptstyle H}\right]_{\scriptscriptstyle{\mathfrak{m}_{2}}}$$

for any maximal ideals \mathfrak{m}_i of $\bar{k} \otimes_k R^H$ which contain \mathfrak{p}^H , where \bar{k} denotes the algebraic closure of k. On the other hand, since \mathfrak{p}^H is unramified over $\mathfrak{p} \cap R^N$, $R^H_{\mathfrak{p}^H}$ is a regular local ring. This implies that $\bar{k} \otimes_k R^H$ is a polynomial ring. Hence R^H is also a polynomial ring.

For a subset A of a ring S, $\langle A \rangle_s$ denotes the ideal of S generated by A.

(2.2) Lemma. For a subgroup N of GL(V) let W be a kN-submodule of V with $[V/W]^N = V/W$. Then $R^N/[\langle W \rangle_R]^N$ is a polynomial ring.

Proof. The additive group $\bar{k} \otimes_k V/W$ acts transitively on the set consisting of closed points in the support of the $\bar{k} \otimes_k R^N$ -module $\bar{k} \otimes_k R^N/[\langle W \rangle_R]^N$. Therefore $R^N/[\langle W \rangle_R]^N$ is a polynomial ring.

(2.3) Lemma. Suppose that N and W are the same as in (2.2). Furthermore let W contain a kN-submodule \widetilde{W} such that $\dim W/\widetilde{W}=1$. Then $[R^H/[\langle \widetilde{W} \rangle_R]^H]^{N/H}$ is a polynomial ring where H denotes the inertial group of $\langle \widetilde{W} \rangle_R$ under the action of N.

This follows easily from (2.2).

- (V,H), which is called a *couple*, stands for a pair of a group H and an H-faithful kH-module V such that V/V^H is a nonzero trivial kH-module (i.e., H acts trivially on the nonzero vector space V/V^H , and so H is an elementary abelian p-group). (U,L) is said to be a *subcouple* of (V,H) if L is a subgroup of H and U is a kL-submodule of V. Further we say that (V,H) decomposes to subcouples (V_i,H_i) $(1 \le i \le m)$ if $H = \bigoplus_{i=1}^m H_i$, $V^H \subseteq V_i \subseteq V^{H_j}$ for all $1 \le i$, $j \le m$ with $i \ne j$ and V/V^H $(=\sum_{i=1}^m V_i/V^H) = \bigoplus_{i=1}^m V_i/V^H$.
- (2.4) Lemma. Suppose that a couple (V, H) decomposes to subcouples (V_i, H_i) $(1 \le i \le m)$. Then R^H is a polynomial ring if and only if $R_i^{H_i}$ $(1 \le i \le m)$ are polynomial rings, where each R_i is the symmetric algebra of V_i .

Proof. The "if" part of (2.4) is obvious. So we assume that R^H is a polynomial ring. Then the ideal $[\langle V^H \rangle_R]^H$ of R^H is generated by V^H . From this we obtain

$$[\langle V_i^{H_i} \rangle_{R_i}]^{H_i} = \langle V_i^{H_i} \rangle_{R_i^{H_i}} \qquad (1 \leq i \leq m),$$

since the canonical kH_i -epimorphism $V \rightarrow V_i$ induces a graded epimorphism $R^H \rightarrow R_i^{H_i}$. Hence, by (2.2), $R_i^{H_i}$ ($1 \le i \le m$) are polynomial rings.

A couple (V, H) is defined to be *indecomposable* if it does not decompose to subcouples (V_i, H_i) $(1 \le i \le m)$ with $m \ge 2$.

The following theorem, which is a special case of (1.3), plays an essential role in § 3.

(2.5) Theorem (cf. [4]). Let (V, H) be an indecomposable couple. Then R^H is a polynomial ring if and only if dim $V/V^H=1$.

By (1.2), (2.4) and (2.5) we can classify abelian subgroups H of GL(V) such that R^H are polynomial rings (cf. [4]).

(2.6) Lemma. Suppose that for a subgroup N of GL(V) W is a kN-submodule of V. If R^N is a polynomial ring, then $R^N/[\langle W \rangle_R]^N$ is also a polynomial ring.

Using (2.2), we can easily prove this.

Now let $\{X_1, \dots, X_n\}$ be a k-basis of V such that all $\bigoplus_{i=1}^{j} kX_i$ $(1 \le j \le n)$ are kG-submodules of V. The condition (2) of (1.3) is characterized by

- (2.7) Proposition. The following conditions are equivalent:
- (1) $\prod_{i=1}^{n} |GX_i| = |G|.$
- (2) There exist subgroups G_i $(1 \le i \le n)$ of G such that $GX_i = G_iX_i$ and $G_iX_j = \{X_j\}$ for all $1 \le i$, $j \le n$ with $i \ne j$. (In this case $G = G_1 \cdots G_n$.)
- (3) There exist homogeneous polynomials $f_i \in k[X_1, \dots, X_i]$ $(1 \le i \le n)$ such that $R^g = k[f_1, \dots, f_n]$ and each f_i is divisible by X_i in R.

The implications $(2)\Rightarrow(1)\Rightarrow(3)$ are easy. The result (1.2) of Serre is used in the proof of $(3)\Rightarrow(2)$.

By (2.3) and the Galois descent, we obtain

- (2.8) Proposition. The following conditions are equivalent:
- (1) R^{g} is a polynomial ring.
- (2) There exists an n-dimensional graded polynomial subalgebra $S = k[f_1, \dots, f_n]$ of R^g with

$$\prod_{i=1}^n \deg f_i \leq |G|$$

such that $S \cap \sum_{i=1}^{j} RX_i = \sum_{i=1}^{j} Sf_i$ for all $1 \leq j \leq n$, where f_i are homogeneous polynomials.

§ 3. The main theorem. We adopt the following notation and terminology: Put $V_0 = V$ and for any integer $j \ge 1$ define $V^j = V^G_{j-1}$, $V_j = V_{j-1}/V^j$ respectively. As G is unipotent, $V_j = V^j = 0$ for sufficiently large j. Let $\underline{X} = \{X_i | i \in I\}$ be a k-basis of V. The set \underline{X} is said to be a k-basis relative to G if, for each $j (\ge 1)$ with $V^j \ne 0$, there is a subset of \underline{X} whose canonical image in V_{j-1} is a k-basis of V^j .

In this section we will give an outline of the proof of a stronger result than (1.3).

(3.1) Theorem. The following statements on a pair of V and G are equivalent:

- (1) R^{g} is a polynomial ring.
- (2) There is a k-basis $\{X_i | i \in I\}$ of V relative to G which satisfies the equality

$$\prod_{i \in I} |GX_i| = |G|.$$

It suffices to show the implication $(1)\Rightarrow(2)$ of this theorem. So we suppose that R^a is a polynomial ring and will prove the assertion (2) by induction on the order of G.

If $G=\{1\}$, there is nothing to prove. Thus we assume $G \neq \{1\}$. Let M be a subspace of V^{m-1} such that $\dim V^{m-1}/M=1$ where $m=\max{\{j\,|\,V^j\neq 0\}}$. Further let H be the inertia group of the prime ideal of R generated by $\varphi_{m-2}^{-1}(M)$ under the natural action of G. Here φ_{m-2} is the canonical epimorphism $V \rightarrow V_{m-2}$. Then we may assume that |G|>|H|. By (2.1) R^H is a polynomial ring. Hence, using the induction hypothesis, we have a k-basis $\{Y_i\,|\,i\in I\}$ of V relative to H which satisfies

$$\prod_{i\in I}|HY_i|=|H|.$$

On the other hand, from (2.4), (2.5), (2.6) and (2.7), we get

(3.2) Proposition. If for a k-basis $\{Z_i | i \in I\}$ of V relative to G the equality

$$\prod_{i\in I}|HZ_i|{=}|H|$$

holds, then there exists another k-basis $\{Z_i'|i\in I\}$ of V relative to G such that

$$\prod_{i\in I}|GZ_i'|=|G|.$$

To prove our theorem we need only to construct a k-basis $\{Z_i | i \in I\}$ of V relative to G with

$$\prod_{i\in I}|HZ_i|=|H|.$$

Let us put

$$J = \{i \in I \mid |HY_i| < |HY_{j(i)}| \text{ for some } j(i) \in I\}$$

and set $U = \bigoplus_{i \in J} kY_i$. Then U is a kG-submodule of V. By (2.8) we infer that A^G is a polynomial ring where A denotes the symmetric algebra of U. Let $\rho: G \rightarrow GL(U)$ be the representation of G associated with the kG-module U. As $|G/\operatorname{Ker} \rho| < |G|$, from the induction hypothesis we find a k-basis $\{Z_i | i \in J\}$ of U relative to $G/\operatorname{Ker} \rho$ with

$$\prod_{i\in I} |GZ_i| = |G/\operatorname{Ker} \rho|.$$

Clearly there are bases of V relative to G which contain $\{Z_i | i \in J\}$ respectively. Moreover, using (2.4) and (2.5), we can prove

(3.3) Lemma. There are elements Z_i $(i \in I \setminus J)$ with

$$\prod_{i\in N} |HZ_i| = |H \cap \operatorname{Ker} \rho|$$

such that $\{Z_i | i \in I\}$ is a k-basis of V relative to G.

The set $\{Z_i | i \in I\}$ is a k-basis of V as desired. Thus the proof of

(3.1) is completed.

Detailed accounts will be published elsewhere.

References

- [1] M.-J. Bertin: Sous-anneaux d'invariants d'anneaux de polynomes. C. R. Acad. Sci. Paris, 260, 5655-5658 (1965).
- [2] N. Bourbaki: Groupes et algèbres de Lie. Chs. 4, 5 et 6, Herman, Paris (1968).
- [3] C. Chevalley: Invariants of finite groups generated by reflections. Amer. J. Math., 67, 778-782 (1955).
- [4] H. Nakajima: Modular representations of abelian groups with regular rings of invariants (to appear in Nagoya Math. J.).
- [5] J.-P. Serre: Groupes finis d'automorphismes d'anneaux locaux réguliers. Colloq. d'Alg. E. N. S. (1967).