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§1. Introduction. Let V be an n-dimensional vector space over
a field k of characteristic p and G a finite subgroup of GL(V). Then
G acts linearly on the symmetric algebra R of V. We denote by R¢
the subring of R consisting of all invariant polynomials under this
action of G. The following theorem is well known.

(1.1) Theorem (Chevalley-Serre, cf. [2], [3], [6]). Suppose that
p=0 or (|G|, p)=1. Then R? is a polynomial ring if and only if G is
generated by pseudo-reflections in GL(V) (an element o of GL(V) is said
to be a pseudo-reflection if rank (e —1)<1).

Now we assume that p >0 and that the order of G is divisible by
p. Serre obtained a necessary condition for R¢ to be a polynomial
ring as follows.

(1.2) Theorem (Serre, cf. [2], [6]). If R¢ is a polynomial ring,
then G is generated by pseudo-reflections.

However the converse of (1.2) is not always true. For example
RoF9 (n.=4, p odd) are not polynomial rings, where O,(F,) are ortho-
gonal subgroups of GL(V) of dimension » defined over the subfield F,
of k consisting of ¢ elements.

Hereafter we suppose that k is the prime field of characteristic
p(>>0) and that G is a p-subgroup of GL(V).

The purpose of this note is to announce our results on rings of
invariants of p-groups. We can completely determine p-groups G such
that R¢ are polynomial rings. The main result is

(1.3) Theorem. The following statements on a pair of V and G
are equivalent :

1) R¢is a polynomial ring.

(2) There is a k-basis {X,, - - -, X,} of V with the equality

fl1ex=I6]
such that all ®i_, kX, A <j<n) are kG-submodules of V.

In [1] it has been shown that if G is a p-Sylow subgroup of GL(V),
R¢ is a polynomial ring.

§2. Preliminaries. We need some lemmas on invariant sub-
rings of polynomial rings:
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(2.1) Lemma. Let N be a subgroup of GL(V) and let H be the
inertia group of a prime ideal p of R under the natural action of N.
If RY is a polynomial ring, then R¥ is also a polynomial ring.

Proof. It suffices to treat the case where p is generated by

pNV.
Then we easily see that

[Ferr], =[krr]
for any maximal ideals m, of £®, R¥ which contain p#, where k denotes
the algebraic closure of k. On the other hand, since p¥ is unramified
over pNRY, R% is a regular local ring. This implies that £®Q, R¥ is a
polynomial ring. Hence R¥ is also a polynomial ring.

For a subset A of a ring S, (4); denotes the ideal of S generated
by A.

(2.2) Lemma. For a subgroup N of GL(V) let W be a kEN-sub-
module of V with [V/WI¥=V/W. Then RY/[{W),]" is a polynomial
ring.

Proof. The additive group k®, V/W acts transitively on the set
consisting of closed points in the support of the k®, R¥-module
E®, RY/[{W>z]¥. Therefore RY/[{W);]" is a polynomial ring.

(2.3) Lemma. Suppose that N and W are the same as in (2.2).
Furthermore let W contain a kN-submodule W such that dim W/W=1.
Then [R® /[{ W 1717 is a polynomial ring where H denotes the inertia
group of (W, under the action of N.

This follows easily from (2.2).

(V, H), which is called a couple, stands for a pair of a group H
and an H-faithful kH-module V such that V/V# is a nonzero trivial
kH-module (i.e., H acts trivially on the nonzero vector space V/VZ,
and so H is an elementary abelian p-group). (U, L) is said to be a
subcouple of (V, H) if L is a subgroup of H and U is a kL-submodule
of V. Further we say that (V, H) decomposes to subcouples (V,, H))
AZism)if H=@r, H,, VECV,ZS V¥ for all 1<4, j<m with i=j and
V/VH (=Z§n=1 V’l/VH):@ﬁl Vz/VH-

(2.4) Lemma. Suppose that a couple (V, H) decomposes to sub-
couples (V,, H) 1<i<m). Then R is a polynomial ring if and only
if RF 1<i<m) are polynomial rings, where each R, is the symmetric
algebra of V,.

Proof. The “if” part of (2.4) is obvious. So we assume that R#
is a polynomial ring. Then the ideal [(VZ).]# of R¥ is generated by
V#. From this we obtain

[(VE g = (VIS (LZi<m),
since the canonical kH,;-epimorphism V—V, induces a graded epimor-
phism RZ—R¥:, Hence, by (2.2), R¥ (1<i1<m) are polynomial rings.

my
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A couple (V, H) is defined to be indecomposable if it does not de-
compose to subcouples (V,, H) A<i<m) with m=>2.

The following theorem, which is a special case of (1.83), plays an
essential role in § 3.

(2.5) Theorem (cf. [4]). Let (V, H) be an indecomposable couple.
Then R is a polynomial ring if and only if dim V/V#=1.

By (1.2), (2.4) and (2.5) we can classify abelian subgroups H of
GL(V) such that R# are polynomial rings (cf. [4]).

(2.6) Lemma. Suppose that for a subgroup N of GL(V) Wisa
EN-submodule of V. If R¥ is a polynomial ring, then RY/[{W)z]" is
also a polynomial ring.

Using (2.2), we can easily prove this.

Now let {X, - - -, X,} be a k-basis of V such that all ®_, kX, A7
<n) are kG-submodules of V. The condition (2) of (1.3) is character-
ized by

(2.7) Proposition. The following conditions are equivalent :

@ T]8:|GX.|=|Gl.

(2) There exist subgroups G, 1<i1<n) of G such that GX,=G X,
and G.X,;={X}} for all 1<4, j<n with ixj. (In this case G=G,- -
G,.)

(3) There exist homogeneous polynomials f, € k[X,, ---,X,] A1
<mn) such that Ré=Ek[f,, - - -, f.] and each f, is divisible by X, in R.

The implications (2)=(1)=(3) are easy. The result (1.2) of Serre
is used in the proof of (3)=(2).

By (2.3) and the Galois descent, we obtain

(2.8) Proposition. The following conditions are equivalent :

(1) RE¢ s a polynomial ring.

() There exists an n-dimensional graded polynomial subalgebra
S=k[f1, o ’fn] Of R¢ with

ilfll deg f,<|G|

such that SN i, RX,=>1.,Sf, for all L<j<n, where f, are homo-
geneous polynomials.

§3. The main theorem. We adopt the following notation and
terminology: Put V,=V and for any integer j=1 define V/'=V9%_,,
V,=V,_,/V? respectively. As G is unipotent, V,=V?=0 for sufficiently
large j. Let X={X,|ic I} be a k-basis of V. The set X is said to be
a k-basis relative to G if, for each j(=1) with V’/2:0, there is a subset
of X whose canonical image in V,_, is a k-basis of V.

In this section we will give an outline of the proof of a stronger
result than (1.3).

(8.1) Theorem. The following statements on a pair of V and G
are equivalent :
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(1) R is a polynomial ring.
(2) There is a k-basis {X,|ie I} of V relative to G which satisfies
the equality
[11GX,|=|G].
i€l

It suffices to show the implication (1)=(2) of this theorem. So we
suppose that R¢ is a polynomial ring and will prove the assertion (2)
by induction on the order of G.

If G={1}, there is nothing to prove. Thus we assume G=x{1}.
Let M be a subspace of V™' such that dim V™-'/M=1 where
m=max {f| V/=0}. Further let H be the inertia group of the prime
ideal of R generated by ¢;',(M) under the natural action of G. Here
¢n-. is the canonical epimorphism V-V, _,. Then we may assume
that |G|>|H|. By (2.1) R¥ is a polynomial ring. Hence, using the
induction hypothesis, we have a k-basis {Y,|ie I} of V relative to H
which satisfies

T1IHY |=|H].

On the other hand, from (2.4), (2.5), (2.6) and (2.7), we get
(8.2) Proposition. If for a k-basis {Z,|ie I} of V relative to G
the equality
[1|HZ,|=|H]|
i€l

holds, then there exists another k-basis {Z;|ie I} of V relative to G
such that
[11GZ|=|G|.

iel
To prove our theorem we need only to construct a k-basis {Z,|¢ € I}

of V relative to G with |
il;[leZ‘l=lH|'

Let us put
J={iel||HY,|<|HY | for some j(i) € I}
and set U=®,., kY,. Then U is a kG-submodule of V. By (2.8) we
infer that A¢ is a polynomial ring where A denotes the symmetric
algebra of U. Let p: G—GL(U) be the representation of G associated
with the kG-module U. As |G/Ker p|<|G|, from the induction hypo-
thesis we find a k-basis {Z,|i e J} of U relative to G/Ker p with
[11GZ.|=|G/Ker o|.

i€
Clearly there are bases of V relative to G which contain {Z,|i e J} re-
spectively. Moreover, using (2.4) and (2.5), we can prove
(3.3) Lemma. There are elements Z, (i € I\J) with
]'[\J |HZ,|=|HNKer p|

i€l
such that {Z,|i eI} is a k-basis of V relative to G.
The set {Z,|i € I} is a k-basis of V as desired. Thus the proof of
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(8.1) is completed.
Detailed accounts will be published elsewhere.
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