103. On Certain Numerical Invariants of Mappings over Finite Fields. III

By Takashi Ono
Department of Mathematics, Johns Hopkins University
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 1980)

Introduction. This is again a continuation of my two preceding papers*) [3]. We shall be concerned with algebras with involution and Hopf maps.
§ 1. Algebras with involution. Let $K=\boldsymbol{F}_{q}$ (q : odd) and let A be an associative algebra with involution α. (See [1] for basic facts on such algebras). Take an invertible element $\theta \in A$ such that
(1.1) $\quad \theta^{\alpha}=\varepsilon \theta, \quad \varepsilon= \pm 1$
and consider the mapping $F: A \rightarrow A$ given by
(1.2) $\quad F(x)=x^{\alpha} \theta x, \quad x \in A$.

Clearly, F is a quadratic mapping of the underlying vector space of A into itself. In this section, we shall determine invariants ρ_{F}, σ_{F} for this mapping when the algebra (A, α) is simple. Since all finite division rings are commutative, there are 4 types of such algebras, up to the change of ground fields:
(i) $A=K_{r} \oplus K_{r}, \quad(x, y)^{\alpha}=\left({ }^{t} y,{ }^{t} x\right), \quad \tau(x, y)=\operatorname{tr}(x)+\operatorname{tr}(y)$,
(ii) $A=K_{r}, \quad x^{\alpha}=S^{-1 t} x S, \quad{ }^{t} S=S, \quad \tau(x)=\operatorname{tr}(x)$,
(iii) $A=K_{2 s}, \quad x^{\alpha}=J^{-1} t x J, \quad J=\left(\begin{array}{cc}0 & 1_{s} \\ -1_{s} & 0\end{array}\right), \quad \tau(x)=\operatorname{tr}(x)$,
(iv) $\quad A=L_{r}, \quad L=F_{q^{2}}, \quad x^{\alpha}=S^{-1}{ }^{t} \bar{x} S, \quad{ }^{t} \bar{S}=S, \quad \tau(x)=\operatorname{tr}(x)+\overline{\operatorname{tr}(x)}$.
(Here τ means the reduced trace of the algebra A over $K, \operatorname{tr}(x)$ means the trace of the matrix x and the bar means the conjugation of the quadratic extension L / K.) Note that the trace has the properties:
(1.3) $\tau\left(x^{\alpha}\right)=\tau(x), \tau(x y)=\tau(y x)$, the mapping $(x, y) \mapsto \tau(x, y)$ is a non-degenerate symmetric bilinear form on A.
Therefore, to each $\lambda \in A^{*}$, the dual space of A, there corresponds uniquely an element $a=a_{\lambda} \in A$ such that $\lambda(x)=\tau(a x)$. Conversely, any $a \in A$ defines a linear form $\lambda=\lambda_{a}$ by $\lambda(x)=\tau(a x)$. We have
(1.4) $\quad F_{\lambda}(x)=\lambda(F(x))=\tau\left(a x^{\alpha} \theta x\right)$.

Put

$$
\begin{equation*}
\langle x, y\rangle_{\lambda}=\frac{1}{2}\left(F_{\lambda}(x+y)-F_{\lambda}(x)-F_{\lambda}(y)\right) . \tag{1.5}
\end{equation*}
$$

Then, we have

[^0]\[

$$
\begin{equation*}
r_{\lambda}=\operatorname{rank} F_{\lambda}=\operatorname{dim} A-\operatorname{dim} I_{\lambda}, \quad I_{\lambda}=\left\{x \in A ;\langle x, y\rangle_{\lambda}=0\right. \tag{1.6}
\end{equation*}
$$

\]

for all $y \in A\}$.
A simple computation using (1.3) shows that

$$
\begin{equation*}
\langle x, y\rangle_{2}=\frac{1}{2} \tau\left(\left(a x^{\alpha} \theta+\varepsilon a^{\alpha} x^{\alpha} \theta\right) y\right) \tag{1.7}
\end{equation*}
$$

Hence, by (1.3), (1.6), we have
(1.8) $x \in I_{\lambda} \Leftrightarrow a x^{\alpha}+\varepsilon \alpha^{\alpha} x^{\alpha}=0 \Leftrightarrow x\left(a^{\alpha}+\varepsilon a\right)=0$,
which, in particular, shows that I_{λ} is a left ideal of A. Now, remember that only λ 's for which r_{λ} is odd are meaningful for the computation of ρ_{F} (see (II. 1.4)). Since every left ideal of our algebra A is a direct sum of minimal left ideals whose dimensions are easily determined, we see already from (1.6) that $\rho_{F}=0$ in the following cases: (i) r : even, (ii) r : even, (iii) and (iv). Therefore, it remains to consider the cases : (i) r : odd, (ii) r :odd.

Case (i) r : odd. If $\lambda=\lambda_{c}$ with $c=(a, b) \in A$, we have
(1.9) $I_{\lambda}=\left\{z=(x, y) \in A ; z\left(c^{\alpha}+\varepsilon c\right)=0\right\}$.

If we put $h={ }^{t} b+\varepsilon a$, then
(1.10) $I_{\lambda}=\left\{(x, y) \in K_{r} \oplus K_{r} ; x h=y^{t} h=0\right\}=M \oplus N$,
where $M=\left\{x \in K_{r} ; x h=0\right\}, N=\left\{y \in K_{r} ; y^{t} h=0\right\}$. If $\operatorname{rank} h=d$, then, normalizing h by multiplying non-singular matrices on both sides, we see that $\operatorname{dim} M=r(r-d)$. Since rank ${ }^{t} h=d$, it follows that $\operatorname{dim} I_{\lambda}$ $=2 r(r-d)$ is even as well as $\operatorname{dim} A=2 r^{2}$, and we have $\rho_{F}=0$, again.

Case (ii) r : odd. In this case, $A=K_{r}, r$: odd, $a^{\alpha}=S^{-1 t} a S,{ }^{t} S=S$ and
(1.11) $I_{\lambda}=\left\{x \in A ; x\left(a^{\alpha}+\varepsilon a\right)=0\right\}, \quad \varepsilon= \pm 1$.

As above, we see that $\operatorname{dim} I_{\lambda}=r(r-d)$ if $d=\operatorname{rank}\left(a^{\alpha}+\varepsilon a\right)=\operatorname{rank}\left({ }^{t}(S a)\right.$ $+\varepsilon(S a)$), and so $r_{\lambda}=\operatorname{dim} A-\operatorname{dim} I_{\lambda}=r d$. Hence, only the case where d is odd is meaningful. If $\varepsilon=-1, d$ is even because ${ }^{t}(S a)-(S a)$ is skew-symmetric and we have $\rho_{F}=0$, again. Therefore, we only have to consider the case $\varepsilon=1$. We have then, by (II. 1.4),

$$
\begin{equation*}
\rho_{F}=(q-1) \sum_{r_{\lambda} \text { odd }} q^{r^{2}-r} \lambda=(q-1) \sum_{\substack{\leq \leq \leq \leq r \\ d \\ d}} N_{d} q^{r d}, \tag{1.12}
\end{equation*}
$$

where N_{d} means the cardinality of the set
(1.13) $E(r, d)=\left\{a \in K_{r} ; \operatorname{rank}\left({ }^{t} a+a\right)=d\right\}, d:$ odd.

Along with the set (1.13), we need the set
(1.14) $S(r, d)=\left\{x \in A ;{ }^{t} x=x, \operatorname{rank} x=d\right\}$.

Clearly, the mapping $f: E(r, d) \rightarrow S(r, d)$ defined by $f(a)={ }^{t} a+a$ is a surjective mapping where each fibre consists of the same number $\left(=q^{(r(r-1)) / 2}\right)$ of matrices, i.e. of all skew-symmetric matrices of degree r. (In fact, $f(a)=f(b) \Leftrightarrow b=a+c,{ }^{t} c+c=0$.) Therefore, we have

$$
\begin{equation*}
[E(r, d)]=q^{(r(r-1)) / 2}[S(r, d)] . \tag{1.15}
\end{equation*}
$$

As is well-known, every symmetric matrix of rank d is congruent
to either $P=\left(\begin{array}{ll}1_{d} & 0 \\ 0 & 0\end{array}\right)$ or $Q=\left(\begin{array}{ll}R & 0 \\ 0 & 0\end{array}\right)$, where $R=\left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & \ddots & \\ & & \ddots & \\ & & & \\ & & & \gamma\end{array}\right), \gamma$ being an element of K^{\times}but not in $\left(K^{\times}\right)^{2}$. Call G_{P}, G_{Q} the isotropy group of P, Q, respectively. Then, we have
(1.16) $\quad[S(r, d)]=\left[G L_{r}(K)\right] /\left[G_{P}\right]+\left[G L_{r}(K)\right] /\left[G_{Q}\right]$.

Since we have

$$
\begin{aligned}
& G_{P}=\left\{\left(\begin{array}{ll}
X & 0 \\
Y & Z
\end{array}\right) \in K_{r} ; X \in O\left(1_{d}\right), Y \in K_{r-d, d}, Z \in G L_{r-d}(K)\right\} \text { and } \\
& G_{Q}=\left\{\left(\begin{array}{ll}
X & 0 \\
Y & Z
\end{array}\right) \in K_{r} ; X \in O(R), Y \in K_{r-d, d}, Z \in G L_{r-d}(K)\right\},
\end{aligned}
$$

(1.16) becomes

$$
\begin{equation*}
[S(r, d)]=\frac{\left[G L_{r}(K)\right]}{\left[O\left(1_{d}\right)\right]\left[G L_{r-d}(K)\right] q^{(r-d) d}}+\frac{\left[G L_{r}(K)\right]}{[O(R)]\left[G L_{r-d}(K)\right] q^{(r-d) d}} \tag{1.17}
\end{equation*}
$$

Consider, now, the polynomial $F_{N}(X)=(X-1)\left(X^{2}-1\right) \cdots\left(X^{N}-1\right)$. It is well-known that
(1.18) $\quad\left[G L_{N}(K)\right]=q^{(N(N-1) / 2} F_{N}(q)$.
(As for the cardinalities of geometric objects over \boldsymbol{F}_{q}, see [2].) Let $g(r, d)$ be the cardinality of the set of K-rational points of grassmann variety of the vector space of dimension r consisting of subspaces of dimension d. Then, we know that
(1.19) $\quad g(r, d)=\frac{F_{r}(q)}{F_{d}(q) F_{r-d}(q)}$.

Since d is odd, we have
(1.20) $\left[O\left(1_{d}\right)\right]=[O(R)]=2 q\left(q^{2}-1\right) q^{3}\left(q^{4}-1\right) \cdots q^{d-2}\left(q^{d-1}-1\right)$, and it follows from (1.17), (1.19), (1.20) that

$$
\begin{equation*}
[S(r, d)]=g(r, d) \frac{\left[G L_{d}(K)\right]}{\left[0^{+}\left(1_{d}\right)\right]}=g(r, d) q^{\left(d^{2}-1\right) / 4}(q-1)\left(q^{3}-1\right) \tag{1.21}
\end{equation*}
$$

$$
\cdots\left(q^{d}-1\right) .
$$

Combining (1.12), (1.15), (1.21), we get

$$
\begin{equation*}
\rho_{F}=(q-1) q^{(r(r-1)) / 2} \sum_{\substack{1 \leq d \leq r \\ \text { odd }}} g(r, d) q^{\left(d^{2}-1\right) / 4}(q-1)\left(q^{3}-1\right) \cdots\left(q^{d}-1\right) . \tag{1.22}
\end{equation*}
$$

To sum up,
(1.23) Theorem. Let $K=\boldsymbol{F}_{q}, q$: odd, (A, α) be one of algebras with involution over K given by (i), (ii), (iii), (iv) and F be the quadratic mapping $A \rightarrow A$ given by (1.2). Then, we have $\rho_{F}=0$ except for the case (ii) r : odd, $\varepsilon=1$, and in this case ρ_{F} is given by the formula (1.22).
§2. Hopf maps. I would like to remark that we can obtain ρ_{F} for a certain Hopf map F as an application of the preceding section.

Consider an algebra (A, α) of type (ii) with $A=K_{2}$,

$$
x^{\alpha} \equiv\left(\begin{array}{rr}
x_{4} & -x_{2} \\
-x_{3} & x_{1}
\end{array}\right) \quad \text { when } \quad x=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \quad \text { and } \quad \theta=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Since $\theta^{\alpha}=-\theta$, we have $\varepsilon=-1$. The quadratic map

$$
F(x)=x^{\alpha} \theta x=\left(\begin{array}{cc}
x_{1} x_{2}+x_{3} x_{4} & x_{2}^{2}+x_{4}^{2} \\
-\left(x_{1}^{2}+x_{3}^{2}\right) & -\left(x_{1} x_{2}+x_{3} x_{4}\right)
\end{array}\right)
$$

sends $A=K_{2}=K^{4}$ into the subspace $K^{3} \subset A$ of matrices of trace 0 . Furthermore, if we put $Q(x)=\operatorname{det} x=x_{1} x_{4}-x_{2} x_{3}$, then we have the relation $Q(F(x))=Q(x)^{2}$ which shows that the map $F: K^{4} \rightarrow K^{3}$ is a Hopf map. Since ρ_{F} is independent of the embedding of the image of F (see (I. 2.2)), (1.23) implies that $\rho_{F}=0$ for this Hopf map. Although we cannot develop here full story of Hopf maps (and non-associative algebras with involution as well), we hope to come back to it sometime, somewhere.

References

[1] Albert, A. A.: Structure of algebras. Amer. Math. Soc. Colloquium Series, vol. XXIV, Providence, Amer. Math. Soc. (1961).
[2] Dieudonné, J.: La Géométrie des Groupes Classiques. Ergeb. d. Math. J., Springer (1955).
[3] Ono, T.: On certain numerical invariants of mappings over finite fields. I, II. Proc. Japan Acad., 56A, 342-347; ibid., 56A, 397-400 (1980).

[^0]: *) As in my former paper (II), (I. 2.3) will mean (2.3) in (I).

