103. On Certain Numerical Invariants of Mappings over Finite Fields. III

By Takashi ON0

Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1980)

Introduction. This is again a continuation of my two preceding papers^{*)} [3]. We shall be concerned with algebras with involution and Hopf maps.

§ 1. Algebras with involution. Let $K = F_q$ (q: odd) and let A be an associative algebra with involution α . (See [1] for basic facts on such algebras). Take an invertible element $\theta \in A$ such that

(1.1) $\theta^{\alpha} = \varepsilon \theta$, $\varepsilon = \pm 1$ and consider the mapping $F: A \rightarrow A$ given by

(1.2) $F(x) = x^{\alpha} \theta x, \qquad x \in A.$

Clearly, F is a quadratic mapping of the underlying vector space of A into itself. In this section, we shall determine invariants ρ_F , σ_F for this mapping when the algebra (A, α) is simple. Since all finite division rings are commutative, there are 4 types of such algebras, up to the change of ground fields:

(i)
$$A = K_r \oplus K_r$$
, $(x, y)^{\alpha} = ({}^ty, {}^tx), \quad \tau(x, y) = \operatorname{tr}(x) + \operatorname{tr}(y),$

(ii)
$$A = K_r$$
, $x^{\alpha} = S^{-1} t x S$, $t S = S$, $\tau(x) = \text{tr}(x)$,

(iii) $A = K_{2s}, \quad x^{\alpha} = J^{-1} t x J, \quad J = \begin{pmatrix} 0 & 1_s \\ -1_s & 0 \end{pmatrix}, \quad \tau(x) = \operatorname{tr}(x),$

(iv) $A = L_{\tau}$, $L = F_{q^2}$, $x^{\alpha} = S^{-1} \overline{x}S$, $\overline{S} = S$, $\tau(x) = \operatorname{tr}(x) + \overline{\operatorname{tr}(x)}$. (Here τ means the reduced trace of the algebra A over K, tr (x) means the trace of the matrix x and the bar means the conjugation of the quadratic extension L/K.) Note that the trace has the properties:

(1.3) $\tau(x^{\alpha}) = \tau(x)$, $\tau(xy) = \tau(yx)$, the mapping $(x, y) \mapsto \tau(x, y)$ is a non-degenerate symmetric bilinear form on A. Therefore, to each $\lambda \in A^*$, the dual space of A, there corresponds

uniquely an element $a = a_{\lambda} \in A$ such that $\lambda(x) = \tau(ax)$. Conversely, any $a \in A$ defines a linear form $\lambda = \lambda_a$ by $\lambda(x) = \tau(ax)$. We have

(1.4) $F_{\lambda}(x) = \lambda(F(x)) = \tau(ax^{\alpha}\theta x).$ Put

(1.5)
$$\langle x, y \rangle_{\lambda} = \frac{1}{2} (F_{\lambda}(x+y) - F_{\lambda}(x) - F_{\lambda}(y)).$$

Then, we have

^{*)} As in my former paper (II), (I. 2.3) will mean (2.3) in (I).

T. ONO

[Vol. 56(A),

(1.6)
$$r_{\lambda} = \operatorname{rank} F_{\lambda} = \dim A - \dim I_{\lambda}, \quad I_{\lambda} = \{x \in A ; \langle x, y \rangle_{\lambda} = 0$$
 for all $y \in A\}.$

A simple computation using (1.3) shows that

(1.7)
$$\langle x, y \rangle_{\lambda} = \frac{1}{2} \tau((ax^{\alpha}\theta + \epsilon a^{\alpha}x^{\alpha}\theta)y).$$

Hence, by (1.3), (1.6), we have

(1.8) $x \in I_{\lambda} \Leftrightarrow ax^{\alpha} + \varepsilon a^{\alpha}x^{\alpha} = 0 \Leftrightarrow x(a^{\alpha} + \varepsilon a) = 0,$

which, in particular, shows that I_{λ} is a left ideal of A. Now, remember that only λ 's for which r_{λ} is odd are meaningful for the computation of ρ_F (see (II. 1.4)). Since every left ideal of our algebra A is a direct sum of minimal left ideals whose dimensions are easily determined, we see already from (1.6) that $\rho_F = 0$ in the following cases: (i) r: even, (ii) r: even, (iii) and (iv). Therefore, it remains to consider the cases: (i) r: odd, (ii) r: odd.

Case (i) r: odd. If $\lambda = \lambda_c$ with $c = (a, b) \in A$, we have

(1.9) $I_{\lambda} = \{z = (x, y) \in A ; z(c^{\alpha} + \varepsilon c) = 0\}.$

If we put $h = {}^{\iota}b + \epsilon a$, then

(1.10) $I_{\lambda} = \{(x, y) \in K_r \oplus K_r; xh = y^t h = 0\} = M \oplus N,$

where $M = \{x \in K_r; xh=0\}$, $N = \{y \in K_r; y^th=0\}$. If rank h=d, then, normalizing h by multiplying non-singular matrices on both sides, we see that dim M = r(r-d). Since rank ${}^th = d$, it follows that dim $I_{\lambda} = 2r(r-d)$ is even as well as dim $A = 2r^2$, and we have $\rho_F = 0$, again.

Case (ii) r: odd. In this case, $A = K_r$, r: odd, $a^{\alpha} = S^{-1} {}^{t}aS$, ${}^{t}S = S$ and

(1.11) $I_{\lambda} = \{x \in A ; x(a^{\alpha} + \varepsilon a) = 0\}, \quad \varepsilon = \pm 1.$

As above, we see that $\dim I_{\lambda} = r(r-d)$ if $d = \operatorname{rank} (a^{\alpha} + \epsilon a) = \operatorname{rank} ({}^{\iota}(Sa) + \epsilon(Sa))$, and so $r_{\lambda} = \dim A - \dim I_{\lambda} = rd$. Hence, only the case where d is odd is meaningful. If $\epsilon = -1$, d is even because ${}^{\iota}(Sa) - (Sa)$ is skew-symmetric and we have $\rho_F = 0$, again. Therefore, we only have to consider the case $\epsilon = 1$. We have then, by (II. 1.4),

(1.12)
$$\rho_F = (q-1) \sum_{\substack{r_\lambda \text{ odd}}} q^{r^2 - r} \lambda = (q-1) \sum_{\substack{1 \le d \le r \\ d \text{ odd}}} N_d q^{rd},$$

where N_d means the cardinality of the set

(1.13) $E(r, d) = \{a \in K_r; \text{ rank } (^ta + a) = d\}, d: \text{odd.}$ Along with the set (1.13), we need the set

(1.14) $S(r, d) = \{x \in A ; x = x, rank \ x = d\}.$

Clearly, the mapping $f: E(r, d) \rightarrow S(r, d)$ defined by $f(a) = {}^{t}a + a$ is a surjective mapping where each fibre consists of the same number $(=q^{(r(r-1))/2})$ of matrices, i.e. of all skew-symmetric matrices of degree r. (In fact, $f(a) = f(b) \Leftrightarrow b = a + c$, ${}^{t}c + c = 0$.) Therefore, we have

(1.15) $[E(r, d)] = q^{(r(r-1))/2}[S(r, d)].$

As is well-known, every symmetric matrix of rank d is congruent

442

to either
$$P = \begin{pmatrix} 1_d & 0 \\ 0 & 0 \end{pmatrix}$$
 or $Q = \begin{pmatrix} R & 0 \\ 0 & 0 \end{pmatrix}$, where $R = \begin{pmatrix} 1 & 1 & & \\ & \ddots & \\ & & 1 & \\ & & & 1 \end{pmatrix}$, γ being an

element of K^{\times} but not in $(K^{\times})^2$. Call G_P , G_Q the isotropy group of P, Q, respectively. Then, we have

(1.16) $[S(r, d)] = [GL_r(K)]/[G_P] + [GL_r(K)]/[G_Q].$ Since we have

$$egin{aligned} G_P =& \left\{ egin{pmatrix} X & 0 \ Y & Z \end{pmatrix} \in K_r \,; \, X \in O(1_d), \, Y \in K_{r-d,d}, \, Z \in GL_{r-d}(K)
ight\} \quad ext{and} \ G_Q =& \left\{ egin{pmatrix} X & 0 \ Y & Z \end{pmatrix} \in K_r \,; \, X \in O(R), \, \, Y \in K_{r-d,d}, \, Z \in GL_{r-d}(K)
ight\}, \end{aligned}$$

(1.16) becomes

$$(1.17) \quad [S(r,d)] = \frac{[GL_r(K)]}{[O(1_d)][GL_{r-d}(K)]q^{(r-d)d}} + \frac{[GL_r(K)]}{[O(R)][GL_{r-d}(K)]q^{(r-d)d}}.$$

Consider, now, the polynomial $F_N(X) = (X-1)(X^2-1)\cdots(X^N-1)$. It is well-known that

 $(1.18) \quad [GL_N(K)] = q^{(N(N-1))/2} F_N(q).$

(As for the cardinalities of geometric objects over F_q , see [2].) Let g(r, d) be the cardinality of the set of K-rational points of grassmann variety of the vector space of dimension r consisting of subspaces of dimension d. Then, we know that

(1.19)
$$g(r, d) = \frac{F_r(q)}{F_d(q)F_{r-d}(q)}$$

Since d is odd, we have

(1.20) $[O(1_d)] = [O(R)] = 2q(q^2-1)q^3(q^4-1)\cdots q^{d-2}(q^{d-1}-1),$ and it follows from (1.17), (1.19), (1.20) that

$$(1.21) \quad [S(r,d)] = g(r,d) \frac{[GL_d(K)]}{[0^+(1_d)]} = g(r,d) q^{(d^2-1)/4} (q-1)(q^3-1) \cdots (q^d-1).$$

Combining (1.12), (1.15), (1.21), we get

(1.22)
$$\rho_F = (q-1)q^{(r(r-1))/2} \sum_{\substack{1 \le d \le r \\ d \text{ odd}}} g(r, d)q^{(d^2-1)/4} (q-1)(q^3-1) \cdots (q^d-1).$$

To sum up,

(1.23) Theorem. Let $K=F_q$, q: odd, (A, α) be one of algebras with involution over K given by (i), (ii), (iii), (iv) and F be the quadratic mapping $A \rightarrow A$ given by (1.2). Then, we have $\rho_F=0$ except for the case (ii) $r: \text{odd}, \varepsilon=1$, and in this case ρ_F is given by the formula (1.22).

§ 2. Hopf maps. I would like to remark that we can obtain ρ_F for a certain Hopf map F as an application of the preceding section.

Consider an algebra (A, α) of type (ii) with $A = K_2$,

[Vol. 56(A),

$$x^{lpha} \equiv egin{pmatrix} x_4 & -x_2 \ -x_3 & x_1 \end{pmatrix}$$
 when $x = egin{pmatrix} x_1 & x_2 \ x_3 & x_4 \end{pmatrix}$ and $heta = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$.
Since $heta^{lpha} = - heta$, we have $ext{$arepsilon = -1$}$. The quadratic map $F(x) = x^{lpha} heta x = egin{pmatrix} x_1 & x_2 \ -x_3 & x_4 \end{pmatrix} = egin{pmatrix} x_1 & x_2 \ -x_3 & x_4 \end{pmatrix}$

sends $A = K_2 = K^4$ into the subspace $K^3 \subset A$ of matrices of trace 0. Furthermore, if we put $Q(x) = \det x = x_1x_4 - x_2x_3$, then we have the relation $Q(F(x)) = Q(x)^2$ which shows that the map $F: K^4 \to K^3$ is a Hopf map. Since ρ_F is independent of the embedding of the image of F (see (I. 2.2)), (1.23) implies that $\rho_F = 0$ for this Hopf map. Although we cannot develop here full story of Hopf maps (and non-associative algebras with involution as well), we hope to come back to it sometime, somewhere.

References

- Albert, A. A.: Structure of algebras. Amer. Math. Soc. Colloquium Series, vol. XXIV, Providence, Amer. Math. Soc. (1961).
- [2] Dieudonné, J.: La Géométrie des Groupes Classiques. Ergeb. d. Math. J., Springer (1955).
- [3] Ono, T.: On certain numerical invariants of mappings over finite fields.
 I, II. Proc. Japan Acad., 56A, 342-347; ibid., 56A, 397-400 (1980).