98. On a Result of T. Watanabe on Excessive Functions

By L. STOICA

Department of Mathematics, National Institute for Scientific and Technical Creation, Bucharest, Romania

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1980)

Let $(\Omega, \mathcal{M}, \mathcal{M}_t, X_t, \theta_t, P^x)$ be a standard process with state space E (locally compact, denumerable base) and suppose that its resolvent $\{V_i: \lambda > 0\}$ has the following property:

 $V_{\lambda}(C_{b}(E)) \subset C_{b}(E)$ for each $\lambda > 0$,

where $C_{b}(E)$ is the space of all bounded continuous functions on E.

The aim of this note is to prove the following result, which extends and unifies two results of T. Watanabe (Theorems 1 and 2 in [5]):

Theorem. Let $f: E \rightarrow [0, \infty]$ be a lower semicontinuous function. Assume that for each $x \in E$ there exists a family of nearly Borel sets U(x) such that

1° U(x) is a base of neighbourhoods of x,

2° $E^{x}(f(X_{T_{OU}})) \leq f(x)$ for each $U \in \mathcal{U}(x)$.

Then f is an excessive function.

The proof makes use of Bauer's minimum principle. We also need the following consequence of a result of G. Mokobodzki:

Lemma. If the potential kernel V_o maps the space of all continuous functions with compact support $C_c(E)$ into $C_b(E)$, then for each $g \in C_{c+}(E)$,

 $\inf \{t: t \text{ is a lower semicontinuous excessive function} \}$

and $t \ge V_o$ g on CK, for some compact set $K \ge 0$

Proof. From Theorem 12, p. 231 of [3], we deduce for each lower semicontinuous function g, the function Rg defined by

 $Rg = \inf \{t : t \text{ is an excessive function and } t \ge g\}$

is a lower semicontinuous excessive function. (It should be noted that in [3] are considered only Borel excessive functions but the methods work for universally measurable functions.) Therefore if $g \in C_c^+(E)$ and K is a compact set, then $R(\chi_{CK}V_og)$ is lower semicontinuous. From Hunt's theorem (see [2], page 141) we know that $R(\chi_{CK}V_og)(x)$ $=E^x(V_og(X_{T_{CK}}))=E^x(\int_{T_{CK}}^{\infty}g(X_t)dt)$ and hence $R(\chi_{CK}V_og)\to 0$ when $K\nearrow E$, which implies the lemma.

Proof of the theorem. In order to simplify the exposition we first assume that the potential kernel V_o has also the property $V_o(C_b(E))$ $\subset C_b(E)$. Next we are going to prove $\lambda V_{\lambda} f \leq f$, for $\lambda > 0$. Since f = sup $\{h \in C_c^+(E) : h \leq f\}$, we have only to prove $\lambda V_{\lambda}h \leq f$ for $h \in C_c^+(E)$, $h \leq f$. If we denote by $g_1 = \max(0, h - \lambda V_{\lambda}h)$, $g_2 = \max(0, \lambda V_{\lambda}, h - h)$, the inequality becomes

$$f - \lambda V_{\lambda} h = f - \lambda V_{o} g_{1} + \lambda V_{o} g_{2} \ge 0$$

By the lemma this inequality would follow if we proved

 $f - \lambda V_o g_1 + t + \lambda V_o g_2 \ge 0,$

for each lower semicontinuous excessive function t which satisfy $\lambda V_o g_1 \leq t$ on CK, for some compact set K.

For t and K as above let us suppose that

(1)
$$\alpha = \inf (f - \lambda V_o g_1 + t + \lambda V_o g_2) < 0.$$

Then the set

$$K_o = \{x \in E : f(x) - \lambda V_o g_1(x) + t(x) + \lambda V_o g_2(x) = \alpha\}$$
is compact, because K_o must satisfy $K_o \subset K$.

Now we are going to apply Bauer's minimum principle for the compact space K_o and the family $S = \{t_{|K_o}: t \text{ is a lower semicontinuous excessive function}\}$. Since S separates points of K_o , from page 7 of [1], we get a point $y \in K_o$ such that each positive Radon measure μ on K_o which satisfy

- a) $\mu(t) \leq t(y)$ for each $t \in S$,
- b) $\mu(1) = 1$,

should coincide with εy .

Since $y \in K_o$ we have $h(y) - \lambda V_{\lambda}h(y) \leq f(y) - \lambda V_{\lambda}h(y) \leq f(y) - \lambda V_o g_1(y) + t(y) + \lambda V_o g_2(y) = \alpha < 0$, and hence $y \notin \text{supp } g_1$. Then we choose $U \in \mathcal{U}(y)$ such that $U \cap \text{supp } g_1 = \emptyset$. It follows

$$E^{Y}\left(\int_{o}^{T_{CU}}g_{1}(x_{t})dt\right)=0,$$

which implies

$$E^{v}(V_{o}g_{1}(X_{T_{CU}})) = E^{v}\left(\int_{T_{CU}}^{\infty}g_{1}(X_{t})dt\right) = E^{v}\left(\int_{0}^{\infty}g_{1}(X_{t})dt\right) = V_{o}g_{1}(y).$$

Further from assumption 2° and the above relation we get

 $E^{y}((f - \lambda V_{o}g_{1} + t + \lambda V_{o}g_{2})(X_{T_{CU}})) \leq f(y) - \lambda V_{o}g_{1}(y) + t(y) + \lambda V_{o}g_{2}(y) = \alpha.$

Since $E^{y}(1(X_{T_{CV}})) \leq 1$, from relation (1) we get

 $\alpha \leqslant E^{\nu}(\alpha(X_{T_{CU}})) \leqslant E^{\nu}((f - \lambda V_{o}g_{1} + t + \lambda V_{o}g_{2})(X_{T_{CU}})) \leqslant \alpha.$ Therefore $E^{\nu}(X_{T_{CU}} \in K_{o}) = 1$. We conclude that the measure μ defined by $\mu(f) = E^{\nu}(f(E_{T_{CU}}))$ for $f \in C_{o}(E)$ is a Radon measure supported by K_{o} and it satisfies relations a) and b).

On the other hand $X_{T_{CU}} \in \overline{CU}$, P^y -a.s. and $y \notin CU$. Thus $\mu \neq \varepsilon y$, which contradicts the asserted property of y. Finally our supposition fails, and hence $\alpha \ge 0$. It follows $\lambda V_{\lambda} f \le f$.

Now let us consider the general case (where the potential kernel may be nonfinite). For $\alpha > 0$ we first deduce

 $E^{x}(\exp\left(-\alpha T_{CU}\right)f(X_{T_{CU}})) \leqslant E^{x}(f(X_{T_{CU}})) \leqslant f(x),$

for each $U \in \mathcal{U}(x)$. Then from the first part of the proof, applied with

respect to the α -subprocess, we have $\lambda V_{\lambda+\alpha} f \leq f$, for $\lambda > 0$. When $\alpha \to 0$ We get $\lambda V_{\lambda} f \leq f$.

It is well known that a nonnegative lower semicontinuous function which satisfies $\lambda V_{\lambda} f \leq f$, for each $\lambda > 0$, is excessive. Thus the theorem has been proved.

A preliminary version of this theorem is going to appear in [4].

References

- H. Bauer: Harmonische Räume und ihre Potentialtheorie. Lect. Notes in Math., vol. 22, Springer (1966).
- [2] R. M. Blumenthal and R. K. Getoor: Markov Process and Potential Theory. Academic Press, New York-London (1968).
- [3] G. Mokobodzki: Cônes de potentiels et noyaux subordonnés. in vol. Potential Theory C.I.M.E. Stresa, Roma (1970).
- [4] L. Stoica: Local Operators and Markov Processes. Lect. Notes in Math. (to appear).
- [5] T. Watanabe: On the Equivalence of Excessive Functions and Superharmonic Functions in the Theory of Markov Process. II. Proc. Japan Acad., 38, 402-407 (1962).