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Research Institute for Mathematical Sciences,
Kyoto University

(Communicated by Kosaku Yo0sipaA, M. J. A., Nov. 12, 1980)

We report the following two results on the diagonal spin-spin cor-
relation function {o,woyyy of the two dimensional Ising lattice. (i)
{oowoyyy satisfies a non-linear ordinary differential equation with re-
spect to the temperature, which is equivalent to a sixth Painlevé equa-
tion (P VI). (i) <owoyyy satisfies a non-linear ordinary difference
equation with respect to N. 1In the scaling limit, both the differential
equation (i) and the difference equation (ii) reduce to known results
[1] related to P V (or an equivalent of it, P III [2]) on the scaled two
point function.

Our method is to construct an isomonodromy family of linear dif-
ferential equations in such a way that its - function [3] coincides with
{owoyyy. The difference equation (ii) is a consequence of the relations
among the = function and its Schlesinger transforms [4], [5].

Recently McCoy-Wu [6] and Perk [7] have obtained difference
equations for {e,0,y>. The relations between their works and ours
(for M=N) is yet to be clarified.

1. Results. We follow the notations of [8], [9]. Let {(ouwoyy)>r_<r,
(resp. {ouonyyr,>r.) denote the diagonal spin-spin correlation function
below (resp. above) the critical temperature, where we use the para-
metrization

()] t=(sinh B_E, sinh _FE,)*=(sinh 8, K, sinh 8, E,)"*
with t>1, 8. =1/kT.. We set
2 O'N,_(t)=t(t—1)—(?—t log <0000NN>T_<T¢_%’

oy, +(t) =t(t—1)% log {ouOxx)rssr,— %*t-

Then both ¢=0y,.(t) are solutions of the following second order non-
linear ordinary differential equation.

@ (s —1)%)2
do do

=Nz((t—n%%—a)z—_d?((t—1)_d_£—a—%>((t+1)%‘.;.—o).

The equation (8) is equivalent to the sixth Painlevé equation (5.55) [4]
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with parameters a=(N—-3/2)*/2, p=—(N+1/2)*/2, y=1/8, 6=3/8.

The difference equations for {owoyy)r.sr, are written as a first
order system. We introduce a set of dependent variables ay, Sy, ete.
tabulated below.

(4) G}g)z_]_._(azv—l 13N >’ G?)=i(0€§vﬂ=) ‘Bj(vi)>,

ay \ry  ®ya ay \ri? o

where det GP =1, det G{>=1. These quantities (4) satisfy the follow-

ing bilinear difference equations:

(5) ayaffy—ay_af —By_1rih=0, aN‘BI(Vt—)l_'\/—t-:FlaN-l () — By -10§21=0,
ﬁ““zvﬁvi—n—“w-xﬂf) +2’NCY1(vi) =0, ay0§2 —ay 05" +TN.B§\fi) =V,
@CN+Day .oy 1—@N—Dak—a§6§’ —a§65 =0,
@CN—8)ayfy-1— t laf’ s’ — v ta§ B =0,

(2N—1)a1v7'1v—1_' 21 1(\7—)1""731_—)165\7-)1':0:
(2N+3)a1v131v+1—“§v+421 z(v++21'—“§v'_»31/91(v—21=0,
@N+Dayyy.— VT 585 — v £15785 =0,

The correlation functions are related to (4) through

(6) <0000NN>T—<Tc=t_1/4(t—"1)1/4a—|N|’ (O N DT 45Te= — M E—1D) s

where ay, ry correspond to the solution of (5) with the initial condition

1) =77 =" =0, “0=ﬂ0='—7'0=tm(t—‘1)_m,

a,é-)z —Té+)=ta/4(t—1)_3/4, 5(()—) =ﬁé+) =t—1/4(t_1)1/4,
a_ = F(—1/2,1/2,1;1/t), B =aWt—1(F(—1/2,1/2,1;1/t)
-F(@1/2,1/2,1;1/%)),
i =V EVE—17'2F(—1/2,1/2,1; 1/)—F(1/2,1/2,1; 1/t)).
2. Spin operators. We use free fermion fields () and +'(6)

(0 € R[2zZ) satisfying (Y (O'(@))> =250 —6). We set y.(0)=+"(—0)

+(6) and define ¢, = : exp (ox/2) : by

(8) puf2=[[L B0 V0 Ty Ov-@)

2 2x Vol G0
where o=+ (1 —az)A—az"?) (a=(sinh B_E, sinh _E)"'=1/vVt, z=¢").
Then, using the results in [8] (Chapter VIII) and [9] we obtain

) <0000NN>T~<Tc=(1—a2)1/4<¢0¢1v>'

The commutator product of the free field ¢ .(f) and the ‘‘spin
operator’ ¢, is given by
10) [V.(0), ex]=2V 0 =2 ¥ ¢3(2)

where ¢i(2)=: ¢:(2) exp (0y/2): and ¢i(z)= j —g% Vo, * 1, (6)

2

2,—2

We also set ¢i=g5,,(0)= j -g%miwal)zf and  gi=0f.(0)=

: ¢: exp (oy/2):. The last identity follows from
11 On 1 — Py = PPy €XD (.ON/2) s
The correlation function {ewoyy)r,>7, I8 given by
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(12) (0O n)rssr,=—1—a)" 5 0r)
with a=sinh g,E, sinh g,E,=1/Vt.
3. Construction of an isomonodromy family. We definea 2x2

matrix Y(z, z,)= Y'(z, 20) (wz o 1) by the following series.

18) Y ay=1+3 (o[ [ Lo DB 220 py z)p36, 2)
22 =1 2r 2r 2,—%,
o fiRay 2,
14 V@, 2)u=+23 (— ,zz)z—tf. . fﬂ@ Wy 2= paiy oy
21 = 2r 2 2,—%,
Xf;(zz, FARE ‘fz:t'(zzz—v 2),
where fi(z, 2)=(w/z")*' |1 —e tC¢-0*40) with k=4 or —. Y(z,z,) is

so normalized that Y(z, 20 =1+0(F—27,) (2, o) or 14+0(1/z) (z,= o).
Moreover we have det ¥ (z, z)=1.
We denote by Yi(z, z,) the restriction of 7, z,) to D, ={z||2|s1},

and set Y.(z, z2) = f’,(z, 20) (wz~N 1). The connection between Y .(z, z,)

is given by

(15) Y_(2,20=Y.(2 z(,)(l;” ’f) (k= +),
Y.ow=Y.eu( ) =

If we modify the expectation value so that {y(O)'(¢")> =4276(6—6"),
we obtain the following identities.

a9 P mu=14(1-2) Sl NI 30 @ulD) )

{popn)
if N0, or N=0 and |2|=1, or N=0 and e=+ (for r= ).
an P ey (1— 2 ) B @)
2/ Lpopw)
if N0, or N=0 and |2,|=1, or N=0 and e=F (for £==+).
as £.ey 2= (1= 2) B EHD,
3 {popwy

if N0, or N=0 and |2|s1, or N=0 and e=+ (for r=+).

(19) V.2, 2)n=1+ (1_&) (:gq (25 )y (2) exp (00/2) 2 o)

% {popn?
if N0, or N=0 and |21, or N=0 and e=F (for £==).
(20) V.00, 00)y={popy 1)/ pupwy  if k==, NS0,
@1 Y, (0, 00)i =05 03> /<pspx if =+, NS0,
(22) Y+(0, °°)21=<§00—902—V>/<900§0N> if k==, N§0,
(23) 7,0, 0)u=pupn.i0l{popyy  if k==, NSO.

From (8), (14) and (15) we obtain
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(24) Isz log pipyy = — 3 trace Res 7 (z, a’)“l—a—a;f'.(z, a)

2 w2~V
—1lo ( )
X oa £ 1

4. Deformation and the Schlesinger transformation. The con-
struction in § 3 entails the following monodromy property for the ma-
trix Y,(2)=Y _(2, o). It is a multi-valued analytic matrix with four
regular singularities at 2=0, a, a~! and o, where the local exponents
are given by

1 1 1 1
@5 T = —Nn——é. y T§V=[9 |, TO=|2 |, T¢'= N_E ’
0 0 0 0

respectively. Moreover its global monodromy matrices <_11) at z
o —14222 22 e —1422% 22—\ 1o .
—a!, oo and(zz(l_lz) 1_212) (if x_+),( P )(1f/c——)
at 2z=0, a are independent of a*'. These properties are sufficient to
guarantee that Y ,(z) should satisfy linear differential ejuations of the
form (cf. [3], [5])

(26) r(Log Ay 4- )y,
0z zZ  z—a zZ—a

Y, A, 1 A 1/1
W—(— Z2—a +7 z—a"! +%( O))YN
@D A=GYTPGYT (=0, £), A+A. +A_=—T(.
Here we have set

23) P=7.(0, ), G =Y .(a*', o).

By a change of variables z=aw, t=a"", Z(x)=KY y(a2), K=<W_l1>,

the integrability condition for (26) reduces to a sixth Painlevé equa-
tion ((5.55) in [4]) with parameters a=(N-3/2)*/2, f=—(N+1/2)?/2,
r=1/8, 6=3/38. Correlation functions are related to the  function
4(t) associated with (26); by comparing (24) with the defining
equation dlog r,(t) = trace (4,4, (daja) + AA_(da'/a )+ A, A_(d(a
—a H(@—a"Y)), we find
(29) {oupny=const. t/3(t—1)""z,(t),
The result (3) for {cyoyy)r_<r, follows from (8), (29) and (5.60) [4].

To derive difference ejuations, we observe that changing N into
N —1 amounts to shifting the exponents by integers (Schlesinger trans-

formation) as T+ T'§" + (1 0), T s T 4 (_1 0). It is known [4]

[5] that such transformations are achieved by multiplication by a ra-
tional matrix R,(2):
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B0  Yy.()=Ru(Y.(), RN<z)=(1 O)z+R0N
(VDGR GCD — X)) o (0 \mos
R°”‘<-<G53>)2./(G53>)u 1 )‘G”-l( 1)G” '

Here Y{p signifies the coefficient matrix of Y_(z)=1+Y§;>z"+ ce
(#—o0). In particular, (30) implies

(G3Y) G =Ry(a*)G§.

If we write down (81) and the constraint (27) in terms of the para-
meters ay, By, - - given in (4), we obtain (5). However, care must be
taken in identifying ay, ry with {py> and {pypy>. As is shown in
(20)-(23), the latter correspond to different monodromy problems
(k=4 or —) according to the sign of N, and hence to different solu-
tions of (5). This explains the appearance of |[N|in (6). Finally the
differential equation (3) for {oyoyy)r,>r, iS Obtained by noting that
{pspxy coincides with the r function corresponding to the Schlesinger

1 0), T —T§ + (0 __1) (Theorem 4.1 [4]).

5. Scaling limit. Here we shall show that the previously known
results [1] are reproduced from (8), (5) in the scaling limit N—oo, t=1
+N-'t with £>0 fixed.

In this limit the confluence of two regular singularities 2=0, o
takes place to produce an irregular singularity of rank 1.

Since the monodromy stays constant as we vary N, the limiting
monodromy data are determined from the original ones. To see this
we scale the infinite series (14) by setting z=¢e%?, e=t/2mN (m>0:
arbitrary). Choosing xr= 4 we then have

@ lm (7)Y, 6 0 = Lo=T.o("P ),

transformation T —T® + (

where @(p)=+/p*+m? and IAQ P)=14+0(p") as p— oo in the region 9,

(Fig. 1).
/Mﬂmp=0

V

AN\

Fig. 1
Modifying (14) slightly we get also, after scaling, Y,(p) which has a
similar property in the region 9,. These are connected through
(39) v.o-Yo( 1) Y.o-to( )
The_linear differential equations (26) tend to )
(34) QK=( Z*. n 71_. +<zt/2m ))17’, Yy 1 ( ip b)7
op p—im  p+im 1 c
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35 A.=gorpees, A+A=(_1 e
®5) ’ + —fgl2m 0

() a® 5<¢>)= . (e ) (t)<s—l )
G (5@) dw 1,‘}}‘ 1 G 1/’
Here we have set b=lim ¢ *8y/ay, c=1lim ry/ay.
The difference equations (5) are scaled to give

o (o), )

which is one of the equivalent expressions of the deformation equa-
tions for (34).
= z — = z uy(—1/24-2
If we set 4, =<1/5?_;/|-z 17(—1_/z2+z)) A= <1/z/u'y uy(— 2/ + ))
then 7=7(?) is a solution of PV with «=1/8, f=—1/8, y=0, 6=—1/2.
The relation (29) reduces in the limit to (4.11.9) [1] (with t=—¢; the
factor 1/2 there is erroneous)

B7 limdlog {pwpyy = (— iz + (— 222—172<%— 2) + 17-12(_12_ + z)))_%f-
Finally the differential equation (3) is scaled to

CONNN (XA R A A L ATEREA))

where () =lim o, (¢).
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