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Introduction. Let E be an elliptic curve defined over @, and 7 a
rational prime (#2). Put E,={ac E|¢a=0} and K,=Q(F)), i.e. the
number field generated over @ by all the coordinates of the points of
order £ on E. K, contains a subfield K, which is generated over @ by
all the z-coordinates of the points of order ¢ on E. The degree of
K,/K,is 1 or 2, and usually the latter is the case, for example, when
Gal (K,/Q@=GL,(Z/¢Z) or when E has complex multiplication (see
Remark in § 2).

The aim of this note is to investigate the law of decomposition of
primes in these extensions K,/ K.

Let p be a good prime for E. Put z==, be the Frobenius endo-
morphism of E modp, and a,=tr (z), where trace is taken with
respect to the ¢-adic representation of £ mod p. Then the main result

of this note is the following: If (%)= —1, then the relative degree

of p (=any extension of p to K)) in K,/K; coincides with the absolute
degree of ¢ in Q(«/aj,——4p) /Q. One might say that this is some sort

of reciprocity law, although in case (12—)=1 that cannot always hold.

§1. The following two fields are contained in K,:
i) Q(,), where , is a primitive 4-th root of unity,

i) M,=Q(, 7y - »7..1), where j’s are the j-invariants of
elliptic curves which are ¢-isogenous to E, in other words, M, is the
splitting field of the modular equation J,(X, j(E))=0, where j(E) is the
j-invariant of E.

Both of them are Galois extensions of . Put G=Gal(X,/Q).
Then we can identify G with a subgroup of GL,(Z/¢Z). And the
corresponding subgroups for Q(¢,) and M, by the Galois theory are

S=GNS8L,(Z/¢Z), H=GN{al|ae(Z]£LZ)*},

where I= ((1) (1)), respectively.

Proposition 1. 1) K,=M,Z), 2 M,NQL)DQ( +4). Here
we take +4¢ when £=1 (mod 4) and —¢ when £=3 (mod 4).
Proof. 1) Note that K corresponds to GN{+1} and SL,(Z/¢Z)
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N{alla e (Z/4Z)*}={+1I}. 2) Put N={AeGL,(Z/¢Z)|det A e (Z/LZ)*}.
Then we see easily that Q(v/ +¢) corresponds to NNG and N contains
SL,(Z/¢Z) and {allac(Ze€¢Z)*}. So NNGDSH. This means
QW EHCTM,NQE). Q.E.D.

When G=GL,(Z/¢Z), we have M,NQ()=Q(~*+7¢). But there
are cases where M,DQ(¢,). See Serre [3, p. 309].

Letting f,, f, and f’ be the absolute degrees of P in Q(,), M, and
K, respectively, we have the following

Corollary. f'={fu [, t.e. the least common multiple of f, and
S

As is well-known, f, is the smallest positive integer a for which
p*=1 (mod ¢) holds. From the action of = on (E modp),={a
e Fmod p|la=0}=Z/¢ZDZ|¢Z, we can represent = by a matrix S(z)
in GL, (Z/¢Z) and the characteristic polynomial of S(z) is X*—a,X +p.
Considering the Jordan normal form of S(z), if ¢f(a}—4p), then f, is
the smallest positive integer b such that the characteristic polynomial
of S(z®) has multiple roots in F,=Z/¢Z. 1f ¢|(a}—4p), then f, is 1 or
4 according as £|(o: Z[z]) or not (here o=End,, (£ modp), see [1,
Theorem 1]). Let f be the absolute degree of » in K,/Q and put
k=Q(va%—4p).

Proposition 2. Suppose ¢4(a—4p). If ¢ splits in k/Q, then f,
and f divide ¢—1, while if ¢ remains prime in k/Q, then f, divides
£+1.

Proof. Our assumptions mean that X*—a,X+p splits into two
different linear factors or is irreducible over F,. In the former case,

S(x) is conjugate to (g 2) a,beF, atb. So S@'-'=identity. In

the latter case, S(x) is conjugate to (g 2), a,beF,—F, Asaiscon-

jugate to b over F,, we have a’"'=Norm of a relative to F,/F,=b*"
e F,. So f, divides £+1. Q.E.D.

§2. For a natural number n=2%, 2/b, we put e(n)=a.

Theorem 1. The following three cases occur.

(1) If e(f)+e(Sf), then f=2f".

(i) If e(f)=e(f)>0, then f=f".

(i) If e(f)=e(f)=0, that is, both f, and f, are odd, then we
have both cases. If a,=a gives f=f’, then in case a,=—a we have
f=2f" (and vice versa).

Proof. In any case as [K,: K)]=1 or 2, we know that f=f’ or
2f’. Note that in the cases (i) and (ii), f'={f, f.> is even by Corollary
of Proposition 1.

(i) Suppose e(f))>e(f). Then fi|(f/2), fX(f'/2). Hence if



42 H. ITo [Vol. 56 (A),

Stx")—identity, then SG"=(§ ), a*=det Sa")=—1,ac F.. But

then, as ,S'(frf’)=<g2 O), we have a*=1. This is a contradiction. So

a2
f=2f".
(i) Suppose e(f)<e(S). Then f,|(f/2), f4(f/2). Bo, if

S(z*)=id., then S(z""/*) is conjugate to (g g), a+b, ab=1, a,beF,.

As .S'(:v:f')=((0)b2 bg):id., we have a’=b*=1. Hence 1=ab=a?.

Therefore a(a—b)=0, a contradiction.
(ii) Suppose S@&@”)+id. As S&@Y)=id., we have S(’)

=(_01 _01) Since f’ is even and both f, and f; do not divide f’/2,

we see that S(z”'/?) is conjugate to (8 g), ¢, deF, c*=d*=—1, c+d,

cd=—1. Hence ¢*=—1=cd. So we have ¢c(c—d)=0. A contradic-
tion.

(iii) Note that f, and f, (and hence f’) take the same value for
a,==+a. Take A, Be GL,(F,) which satisfy tr A=—tr B and det A
=det B=p. Suppose the orders of their images into PGL, (F,) coin-
cide. What we have to show is that if A has order m then B has
order 2m or m/2 according as 2¢m or 2||m. But, for odd n, we easily
see that

tr (A™)=tr (A)"—np tr (A" %) — n pPtr (A" %) — .. . —np"V2tr (4).
2

Hence by induction we get tr (A")= —tr (B*). So our assertion is
clear. This completes our proof.

Proposition 3. If £ remains prime in Q(v a,—4p), then the case
(ii) @n Theorem 1 never occurs.

Proof. If ¢|(a}—4p), then f,=1or ¢{. So the assertion is clear.

Now suppose ¢4(a;—4p). Then S(z) is conjugate to (g g), a,beF,

—F, a#b. If e(f,)=e(f)>0, then by Theorem 1 we have S(z’)
=identity. So a'=b"=1. As f’ is even and both f, and f, do not
divide f’/2, we have {a/?, b/*}={+1, —1}. But a is conjugate to b
over F,, so their orders in F;* must coincide. This is a contradiction.
Q.E.D.
Remark. As an application of Theorem 1, we can show that if
E has complex multiplication (say by 4/—¢) we have K,=Kj for all
£>2 and £+q. Indeed, put k,=Q(/—¢q). Let p be a prime which
remains prime in k, and satisfies p=1 (mod ¢). Then a,=0 and the
order f, of p in F}¥ is 1. Hence f,=2 and e(f) >e(f,)=0. Sothe case
(i) occurs. This means that K, K.
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§3. When (-22_) = —1, we have the following simple decomposition

law of primes.

Theorem 2. Suppose (%): —1. Then the relative degree of p

(=any prime in K, lying above p) in K,/ K, coincides with the absolute
degree of £ in Q(Wal—4p)/Q.

Proof. By our assumption, we see ¢f(a}—4p) and both f, and f,
are even. Indeed, by Proposition 1, M,NQC)DQW *£4). If (=1

(mod 4), then (f}) = (%) =—1. When £=38 (mod 4), we easily see that

( —pZ ) =—1. Now put k=Q(va?—4p). Suppose (=3 (mod4). Then

we clearly have e(f,)=1. If £ remains prime in k, then by Proposition
3 the case (ii) of Theorem 1 never occurs, so the case (i) occurs (by the
way, this means especially that 4|f). If ¢ splits in k, then by Prop-
osition 2, f,|(¢—1). Therefore e(f)=1. So we have the case (ii).
Now suppose £=1 (mod4). If 2" exactly divides ¢—1, then e(f,)
=n=>2, because <—1Z—)= —1. If ¢ remains prime in k, then by Prop-
osition 2, f,|(¢+1), so e(f))=1. Hence the case (i) occurs. If ¢ splits
in k, then f|(£—1). Assume f=2f'=2{f,, fi). Then 2"*' divides f,
because e(f)=n. So we have 2"*!|(¢—1), a contradiction. Therefore
we must have f=f’. This completes the proof of our theorem.

§4. We can explain the reason why in the case both f, and f, are
odd (and only in that case) the relation between f and f” cannot be
determined in terms of f, and f, (as in Theorem 1, (iii)).

First note that K, is unchanged when we replace £ with any
other C-isomorphic elliptic curves/Q, while K, is not. Suppose A is
an elliptic curve,, which is C-isomorphic to E, but is not @-isomorphic
to E. Put L,=Q(A). If j(E)+0, 1728, then over some quadratic
field QW d), d € Z, they become isomorphic. Hence K,(v d)=L (v d).
By a simple reasoning, when f’ is even, we see that any prime p of
K/ lying above p always splits in K/(v d)/K,. Therefore the decom-
position of p in K,/K), agrees with that in L,/K;,. If f’ is odd and p
splits in Q(+v d), then the situation is the same as before, but when
f’is odd and p remains prime in Q(v/ d), the decomposition of p in
K,/K, differs from that in L,/K), because above p remains prime in
K\~ d)/K,.
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