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1. For the heat ecluation on an arbitrary bounded domain D
located in the (n+ 1)-dimensional Euclidean space R 1(__R R) (n>= 1),
we can solve the Dirichlet problem in the sense of Perron-Wiener-
Brelot. Because of this, there exists the harmonic measure w on the
boundary 3D or every p e D. The support supp (w) of w, however,
does not coincide with D, so the Dirichlet problem and the minimum
principle should be considered on a relevant part o the boundary.
From the standpoint of the Dirichlet problem, an intrinsic part of the
boundary would be e supp (w). This is also available ior the
minimum principle of superharmonic functions (see Corollary 9).

On the other hand, 2or the het equation two kinds o2 significant
boundary part are known. One is the parabolic boundary 3D and the
other is the essential boundary ess (3D) (see Definitions 2 and 3).

Our purpose of this paper is to show that our relevant parts
)e supp (w), ess (D) and D are equal except or negligible sets.
This throws light on a geometrical property o2 -[.)e supp (w).

Theorem 1. (1) ess (3D)=3D.
(2) ess (3D)De. supp (w) and Z=ess (3D)\e supp (w) is

polar. 1 Furthermore ZcD*\D, where D* is the interior of the closure
of D.2

2. Since a bounded domain D associatecl with the heat equation
is a Bauer harmonic space, we follow C. Constantinescu and A. Cornea
[1] for basic notation and terminology in potential theory.

We denote by (x,t) a point p in Rn+l, where x=(x,...,x) are
he space variables and t the time variable.

1) This means that there exists a positive measure g on Rn/l such that the

potential Gg(p)-.I G(p,q)dl(q) on Rn+l takes the value +c on Z, vhere for

p--(x, t), q--(y, s)

G(p, q)= (4=(t--s))-n/’ exp (-]lx-yll/4(t-s)) if
lo if t<=s,

.and I]xll denotes the Euclidean norm of x e Rn.
2) This is an affirmative solution of a. question proposed orally by Professor

M. ItS.
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Definition 2. For an open set E in Rn/, the parabolic boundary
3;E is the set of points of 3E which can be connected to some point o
E by a closed curve having strictly increasing t-coordinate.

For P0 e E, we denote by A(po, E) the set of all points p e E\{p0}
which can be connected to P0 by a polygonal line in E having strictly
increasing t-coordinate. In particular, if B=B(po, r) is an open ball
with center p0---(x0, to) and radius r0, then A(po, B) is the open hal-
ball {(x, t)

Definition 23 (cf. [2, p. 252]). Let E be an open set and put
ess (3E)={q e 3E; A(q,B(q,D)=/=B(q,DE for all >0}.

We call it the essential boundary of E.
Note that ess (3E) is closed.
For a continuous function f on the boundary of a bounded domairt

D, we denote by H} the solution of the Dirichlet problem with bound-
ary condition f, which is represented by

H(p)= fd,
where w is the harmonic measure on 3D for p e D.

Lemma :. Let P0--(x0, to)e D and A--A(po, D). Then
(1) supp (%o)C {(x, t) e 3D
(2) supp (Wo)Cess (3D).
(3) supp (Wo)-e supp (w).
(4) o- for any p e A.

Here w denotes the harmonic measure for p with respect to the
domain A.

Proof. (1) The potential u(p)-G(p, Po) on R/ (see footnote)) is
strictly positive on A(po, R/) and zero on A(po, R/), which implies
().

(2) Let q e D\ess (D) then there exists ball B=B(q, r) such
that A(q,B)=BD. For continuous unction f on D, we put g=f
onDBand =HonBD. Then
(2 1) r4\, H on D\B
In particular, if supp (f)cB 3D, then by (1), we have H(p)=0 or
any p e B D. This and (2.1) imply H--0, which shows q e supp (Wo)
and we obtain (2).

li"(3) By the Harnack inequa y, we see that w is absolutely con-
tinuous with respect to w0 for any p e A, which implies supp (w)
c supp (w0). On the other hand, for any harmonic function h on D,
h(p0)=0 if h=0 on A. Thus, we obtain (3).

(4) Let f be a continuous function on OD. Putting g=f on
OD and =H} on OAf)D, we have H=H on A. Since ess(OD)

3) See [2, Lemma 2].
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ess (OA),) OA(DOA\ess(OA), so H is uniquely determined by the
restriction of f on 3AOD, which is denoted by f. Hence, putting
f=0 on OD \OA we have HI H on A, which shows (4).

We describe the following four lemmas which are known on
harmonic spaces.

Lemma 4 ([1, p. 45, Cor. 2.3.2]). Let u be a hyperharmonic func-
tion on a bounded domain D. If lim infp u(p)_>_0, then u>=O in D.

Lemma 5 ([1, p. 32, Prop. 3.1.2]). Let U, U’ be open sets with
U’c U, and u, u’ be hyperharmonic functions on U, on U’, respectively.
Put u*=inf (u, u’)on U’ and =u on U\ U’. If u* is lower semi-con-
tinuous, then it is hyperharmonic on U.

Let (p,),_ be a sequence of points in D converging to a boundary
point q e OD as n--.oo. We say that (P,),__>I is regular (resp. non-regular)
if w. converges (resp. does not converge) vaguely to , the Dirac
measure at q. A strictly positive hyperharmonic function on D is
called a barrier of (p)_ if it converges to 0 along (p),_.

Lemma 6 ([1, p. 56, Prop. 2.4.7]). A sequence (p)_ in D is
regular if a barrier of (p)_ exists.

Let v be a potential on D. A positive hyperharmonic function u
on D is called an Evans function of v if for any c0, the set {p e D;
u(p) <= cv(p)} is relatively compact in D.

Lemma 7 ([1, p. 41, Prop. 2.2.4]). Let v be a continuous potential
on D. Then there exists an Evans function u of v which is a con-
tinuous potential.

We put

R(OD)={qOD; there exists a regular sequence which}.converges to q
Note that R(D) is closecl.
Let v0 be a strictly positive continuous potential on D and u0 be an

Evans function of v0 in Lemma 7. In the sequel, v0 and u0 are fixed.
Proposition 8. R(D)=U,e supp (o,).
Proof. Let q e J,e supp (op) then there exists a ball B =B(q, r)

such that ODBc k),esupp (wv). For any continuous function f
on 3D with supp(f)cOD(3B and f(q)=l, H--0. This implies q
e R(OD), that is, R(OD)cpe supp (wp).

Next we shall show the inverse inclusion. Let q0 e R(3D); then
there exists a ball B B(qo, r) such that OD B R(OD). We take an
arbitrary non-negative continuous unction f on OD satisfying supp (f)
cOD B. For any 0 and any q e 3D, we shall show
(2.2) lim inf (Uo(p) Hy(p)) >= O.

pq
pD

4) See [2, Lemma 1].
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If q e OD B, then, by Lemma 6 lim_ Uo(p)-- + c, which gives (2.2).

Suppose that there exist q in OD\B and a sezluence (p,), in D with
lim,= p, q such that
(2.3) lim (eUo(Pn) H(Pn)) <O.

Then, H being bounded on D, we see that (Uo(Pn))n>_ is bounded, which
implies that Vo(p) tends to zero as n-c. By Lemma 6, (p)_ is
regular, so limH(p)--f(q)-O. This contradicts (2.3) and hence
(2.2) holds also for q e D\B. By Lemma 4 we have uoH] in D.
Letting -.0, we conclude H--0, which gives q0e e, supp(w).
This completes the proof.

Corollary" 9. Let u be a sperharmonic function on D and assume
that u is bounded below. If there exists a constant A such that
(2.4) lira inf u(p) >=A for any q e ) supp (),

p-*q p D
pD

then u>_A in D.
Proof. Put u,=u+(1/n)uo-A (n__>l). By Lemma 4, we have

Un>=O in D. Letting n-c, we obtain Corollary 9.
Remark 10. In the above corollary the assumption that u is

bounded below is indispensable. For example, let Do be a bounded
domain, P0 e D0 and D-Do\{Po}. Since supp()P0 or any p e D,
e. supp (o)OD0. Hence the harmonic function u(p)=-G(p, Po)
on D satisfies (2.4) for some constant A, however, u>=A in D does not
hold evidently.

3. In this paragraph, we shall prove Theorem 1.
Proof of (1). We have easily Dess(D). Let qo=(yo, So)

e D\-O then there exists a ball B B(qo, r) such that OD BcOD\OD.
For any p=(x,t) eDB, we have tgSo. In fact, let ql=(y,s) be the
nearest point from p in the intersection of OD and the closed segment
[P, q0]. Then q e OD f B. If t>s0, then t>s, which contradicts q

e OD. Let B’=B(q0, r/2) and q’= (y’, s’) e OD f3 B’. Similarly, we
obtaintgs’oranyp=(x,t) eDB,s’=soandA(qo, B’)=B’(D. Thus
ess (OD)OD, that is, ess (OD)=OD.

Proof of (2). By Lemma 3 and Proposition 8, we see ess (OD)

Je. supp(w) R(OD). Put K-ess (3D) \R(OD) and Z--D* (3 K. Then
D [J Z D* \R(OD), so D Z is a bounded domain. Put u* u0 on D and

+ o on Z. Since u* is lower semi-continuous, Lemma 5 shows that
u* is hyperharmonic on D Z. Besides u* is finite on the dense set of
D Z, so u* is superharmonic on D Z. The inclusion Zc {p e D [2 Z
u*(p)= + oo} implies that Z is polar. ).

Next, we shall show that K-Z. Suppose qo e K\Z; then there

5i F--n--Theorem 25 in [2], it ollows that there exists a positive measure

/J on R such that {p e D
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exists a ball B=B(qo, r) such that BDcR(D) and B\D is a non-
empty open set. Put u**-u0 on B D and + oo on B\D. Similarly
as above, u** is hyperharmonic on B. Since q0 e ess(D), we car
choosep=(xl, t,)eBfD and p2--(x2, t2) eB\D such that t>t.. This
implies that u** is superharmonic on A(p, B),) however, u** is infinite
on a neighbourhood o,f p e A(p,, B), which is a contradiction, that is,
K=Z. This completes the proof.

4. In this last paragraph, we shall give a corollary and some
remarks to our theorem.

Theorem I and Lemma 3 (3), (4) give ollowing
Corollary 11. For any Poe D, supp (w0)cess (3A), Zo=eSs (3A)\

supp (w0) is polar and ZoCA*\A, where A=A(po, D).
Remark 12. Theorem 1 is valid for any bounded open set in Rn/.

In fact, noting that a countable union of polar sets is polar ([2,
Theorem 26]) and applying our theorem to each component of this open
set, we have the above remark.

Remark 1:. For any bounded open set E, we have
(1) ess (E)eE supp (w).
(2) ess (E) E.

In particular )e supp (w) and 3E are not closed.
In fact, let t0=max {t; (x, t) e E}. Since E\ess (E) is open in.

3E, there exists a point P0 e ess (E) {(x, t) e 3E t----to}. By Lemma
3 (1), we see that P0 ee supp (w). Easily, we see also Poe 3,E.

Remark 14. By the same manner, our theorem is valid not only
for heat operator but also for more general parabolic operator, which
induces a Bauer harmonic space and possesses the Doob convergence
property and has the Green function (cf. [1, p. 95]).
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