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1. Introduction. Recently, Hida has introduced generalized
Brownian functionals to discuss the analysis on the L-space (L) built
on the measure space of white noise/(t). The idea of Hida’s analysis
is to take {/}(t)} to be the system of the variables of Brownian func-
tionals, so that we are led to introduce multiplication operators /(t)
and the partial differential operators 3/3B(t) as well as renormalization
of functions of the/(t)’s [1, 2]. We will give, in this series of notes
Parts I-V, a systematic treatment of his analysis and establish formulae
which would make easier to apply his theory.

We will discuss, in Part I, a general theory on Fock spaces and
Hilbert spaces of non-linear functionals of special types, which is a
slight modification of the works of Segal [3], [4] and of Hida-Ikeda [5].

In Part II, the L-space (L)=L(C*, p) will be discussed, where
’CEoC* is a Gelfand triplet and/ is the measure of Gaussian white
noise on *. With the help of transformation S,

(S)() (x+)d/(x), e C, (L2),
dC*

we can apply the analysis established in Part I. We will treat oper-
ators /3x(t), (O/3x(t))*, x(t). =3/x(t)+(/3x(t))* and so forth to carry
on the proposed analysis o Brownian unctionals.

In Part III, we will describe Hida’s analysis by our formulation,
partly. In Part IV, Laplacians on (L) will be discussed. In Part V,
we will discuss Hida-Streit’s approach to Feynman path integral in
line with our formulation.

2. Triplets of Fock spaces. Let (E0, ($, ])0) be a separable real
Hilbert space and let us identify its dual E0* with E0. Suppose that ’ is
a dense linear subset of E0. Let {(, ); p_0} be a consistent sequence
of inner products defined on ’ such that
(2.1) IIll0_plll,_’"gpllll, "", with pc(0,1).
Let E be the completion of C in II, and E_=_E* be the dual o E.
with the inner product (,)_, for p0. Then we have inclusions

cEp+IEc.. CEoC. cE_cE__I.
Let E be the projective limit of the system ((E, I1) P e Z}. Sup-
pose that --E as a set and induce the topology by this equality.



:No. 8] Calculus on Gaussian Whit Noise. I 377

The dual C* of is the inductive limit E_ of the system {(E, I)}.
Denote the natural injection rom E to E by ,, qp. Then an iso-
morphism t from E* to E, and =_, are definefl by the ollowing
conditions;
(2.2) (x, }=(x, )=(x, )_, e E, x e E.

N.B. Generally we denote by the bracket (, } the canonical
bilinear orm between a dual pair.

We are now ready to introduce a sequence o Fock spaces as ol-
lows. Let E be the n-fold symmetric tensor product and e be
their direct sum with weight that is, =(fo, fl, ", f .) e e,
feE has Hilbert norm

(2.3) n. fn Ep@n.
n=O

Then the injection ,q, induces injections from E to Ep,q
rom eq to e, naturally. By these injections, we get a system of
Hilbert spaces {e p e Z} such that e- is the dual of e. Denote
the projective limit and the inductive limit of the system ((e,
p, qeZ}byeSand e8, respectively. Then e8 is the dual of e8.

For a given in E, define an element e in e by
(2.4) e-(1, , /2 , ..., n/n , ...).
Then we have or , e E, x e E_
(2.5) (e, e)=e(’,) and (e, e}=e<x,>.

Theorem 2.1. (i) If the injection ,,q is of Hilbert-Schmidt type
and has norm [[t,,q]]n_sl, so is e, and its norm is dominated by
(1--illlL_) -/.

(ii) If is a nuclear space, so is e8.
For a fixed p, define a symmetric tensor productfg off eE

and g eE by the symmetrization o the tensor product f@gp

eE(+). Let f be in E and G be in E, nkO. Then
(GF f is a continuous linear functional of F e E(-) There-p

exists an.element of E(-), denote it by G.f, such that
(2.6) (E_, G.f)=(GE_,f.

Lemma 2.2 For g E, f eE(-), f eE and G E

Define the following operators on e for g e E and G e __"
n! G .n,(2.7) a(G)

(n-- k)

(2.8) a*(g)"=_ g(7n, for e e.
n=O

Theorem 2.3. For g eE and G e E_, we have
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a*(g)e(R)’’+III,(E,/,,) IIg I1 (1 p)- ( )n(/c !)1/2.

(ii) (, a(G)}-- (a*(G), ),
for e e’-,.-/le-+’c e-, and e’./e+c e.

Theorem 2.4. For f e E gn e E f e E and G e E_, we
have

a(f)a(gn)--a(fg), a*(f)a*(g) -a*(fg)
and

a(G)a*(f)-a*(f)a(G) <G, f>.
:. Hilbert spaces of non.linear functionals on ’. Denote by

Jf0 the linear combination of non-linear functionals {e .....,>; r] e
in e C=E. We introduce a sequence o inner products such that
(3 1) (e .....,> e .....,>)(--e(,,
Denote by () the completion of 0 with respect to (v). Then
is a space of continuous non-linear functionals on and the inclusions
(3.2) (+)(), p e Z,
hold. Let =)be the projective limit of ()and *=-) be the
inductive limit of ’).

Theorem 3.1. For p , is isomorphic to e by the
isomorphism

Remark .2. Let (E) be the Hilbert space with the reproduc-
ing kernel e’,, >p>- (see Aronszajn [6], Hida-Ikeda [5]). Then
the map0 from (E_) to
(3.3) U >6(U) U(t_,),
is one-to-one onto linear. In other words, U() in () can be extended
to a continuous functional U(x) on E_ and U(x) is in (E_).

A non-linear functional U() on E E is n-$imes E-Frdchet dif-
ferentiable if there exist k-ple symmetric linear orms U()( , ., )
for 1 kgn, satisfying the following (3.4) and (3.5)

(3.4) U(+)- U() .__1_ U() ( , , ", ) o( t,,= k!
(3.5) IU((; ,...,)lconst. I,1’" "1,, lkn.
Then U()( , ..., ) is called Frgchet derivative of U(D of order n.
If U(D is n-times E-Fr6chet differentiable, then U(n)(;V, ..., ) caa
be regarded as a continuous n-ple symmetric linear form on E.

Theorem .. If U() is in, then
) U($) is arbitrary times E_-Frgchet di]erentiable and

U($+)= U($) + U(n)( , O.=n[

(ii) There exists e and U can be extended to a linear func-
tional on E_+, in such way that for F e E_+

U(’( F)=<Fe,-,’, >
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(e’-/,,, a(Fn)e(R)’-’,

(iii) For fixed ,, ..., e E_p, the mapping from P) to -:
U() Un( , ".,) is continuous.

4. Traceable space E. In what follows, we will treat only
Hilbert spces of functions which are naturally imbedded into L spaces
and their duals. Therefore, for simplicity, we can omit the notations
of injections without conusions. Let T be a separable metrizable
space with a a-finite Borel measure ,. Let E be a dense linear subset
of L(T, ,) which is itself a Hilbert space with inner product (,) with

Definition 4.1. The space E is called traceable i the linear unc-
tional 3," (t) e R for e E is well defined in E* and if the mapping
t3t E* is strongly continuous in t e T.

If E is traceable, then every element of E is continuous on T and
so is f e En on T. For any f e En, the mapping t3t*fn from T
to E(-) is continuous in t. Further
(4.1) t*" *t,*f=fn(t,, t)
is a continuous function belonging to (Tn, ,n) and this realized the
injection . A dual element F e E* is not necessarily a function
on T, but it is convenient to write F(u,, ..., u) as if a function on T.

Lemma 4.2. Let E be traceable. Then the injection from E
into L(T, ,) satisfies

Lemma 4.. Assume that ]3. If f is in E, then f(t, t)
=3.f is integrable and

f(t, t)d,(t)= (,f)
T k

holds for any c.o.n.s. (} in L(T,,). Furthermore, there exists an
o.n.s. {[ in L(T, ,) such that E and that

f ff
k=l

Since 3, e E*, a,a(t) is an operator on e and a--a*(t) is an
operator on e*. I U() is E -differentiable, then U’(; ) can be ex-
tended to a bounded linear unctional on E* for fixed e E. Further-
more U’($; t)-U’(" St) is a function on T, which belongs to E.

We now return to the setup in 3. We assume that E0 is equal
to L(T, ,) and that (E},ez are given as in 1.

Theorem 4.4. Suppose that the injection o," EL(T,,) is
traceable. Then

( ) the functional derivative

U(): )U’(;t)
(t)
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is a continuous operator on and is strongly continuous in t.
Specially, if U()=(, e} with e e(R), then

(4.2) U’( t)= (ate, e(R)) , n(3,,u", )(n-1)}.
(ii) The multiplication

(t) u() (t) u()
is a continuous operator on * and strongly continuous in t.

Remark 4.5. If U() is in (), with p:> 1, then U()( t, ., t)
is in E. For a given U() e (-) and a fixed
is a continuous multi-linear unctional .on E, and hence we can define

8/(t).../6(t) as an operator valued generalized unction in
(t,..., t). In particular, if U() is in ff(0), then there exists an L-function U()( t, ..., t)=(/(t,)... /(t))U(), such that

(4.3) U()( , ..., ])=f U()( t, ..., t)h(t)... ],(t)d,.
JT
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