87. Characteristic Cauchy Problems and Solutions of Formal Power Series

By Sunao **O**UCHI

Department of Mathematics, Jochi (Sophia) University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1980)

§ 1. Introduction. Let C^{n+1} be the (n+1)-dimensional complex space. $z = (z_0, z') = (z_0, z_1, \dots, z_n)$ denotes its point and $\xi = (\xi_0, \xi') = (\xi_0, \xi_1, \dots, \xi_n)$ denotes its dual variable. We shall make use of the notation $\partial_z = (\partial_{z_0}, \partial_{z'}) = (\partial_{z_0}, \partial_{z_1}, \dots, \partial_{z_n}), \ \partial_{z_i} = \partial/\partial z_i$. For a linear partial differential operator $a(z, \partial_z), a(z, \xi)$ denotes its total symbol. Now let us consider Cauchy problem in a neighbourhood Ω of z = 0,

(C.P)
$$\begin{cases} L(z,\partial_z)u(z) = ((\partial_{z_0})^k - A(z,\partial_z))u(z) = f(z), \\ (\partial_{z_0})^i u(0,z') = \hat{u}_i(z'), \quad 0 \le i \le k-1, \end{cases}$$

where

(1.1)
$$A(z,\partial_z) = \sum_{i=0}^{k-1} A_i(z,\partial_{z'})(\partial_{z_0})^i$$

and $A(z, \partial_z)$ is an operator of order *m* and its coefficients and f(z) are holomorphic in Ω and $\hat{u}_i(z')$ $(0 \le i \le k-1)$ are holomorphic in $\Omega' = \Omega$ $\cap \{z_0=0\}$. We can easily find out a solution of formal power series $\hat{u}(z)$ of (C.P) of the form

(1.2)
$$\hat{u}(z) = \sum_{n=0}^{\infty} \hat{u}_n(z')(z_0)^n / n!.$$

 $\hat{u}_n(z')$ $(n \ge k)$ are successively and uniquely determined from (C.P). It follows from well-known Cauchy-Kovalevskaja theorem that whenever $m \le k$, $\hat{u}(z)$ converges and is a unique holomorphic solution of (C.P).

The purpose of this paper is to give an anlytical interpretation of $\hat{u}(z)$, that is, existence of a solution $u_s(z)$ of the equation $L(z, \partial_z)u_s(z) = f(z)$ with the asymptotic expansion $\hat{u}(z)$ in a sector S, when m > k. So we assume m > k in the following.

§ 2. Characteristic indices. In § 2 we introduce a new notation, characteristic indices. Let us write $A(z, \partial_z)$ in the form different from (1.1),

(2.1)
$$A(z,\partial_z) = \sum_{i=0}^m \left(\sum_{l=s_i}^i a_{i,l}(z,\partial_{z'})(\partial_{z_0})^{i-l} \right),$$

where $a_{i,l}(z, \xi')$ is a homogeneous polynomial of ξ' with degree l and if $a_{i,l}(z, \xi') \equiv 0$ for all l, we put $s_i = +\infty$. We expand $a_{i,l}(z, \xi')$ at $z_0 = 0$ with respect to z_0 ,

(2.2)
$$a_{i,l}(z,\xi') = \sum_{j=0}^{\infty} a_{i,l,j}(z',\xi')(z_0)^j.$$

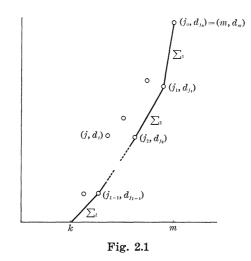
Put

Characteristic Cauchy Problems

(2.3)
$$\begin{cases} d_i = \min \{(l+j); a_{i,l,j}(z', \xi') \equiv 0\} & (i > k): \\ d_k = 1. \end{cases}$$

If $s_i = +\infty$, we put $d_i = +\infty$.

Let us define quantities σ_i $(0 \le i \le l)$. Consider the set $P = \{P_j = (j, d_j); k \le j \le m\}$ in \mathbb{R}^2 . Let \hat{P} be the convex envelope of the set P. The lower convex part of the boundary of \hat{P} consists segments $\sum_i (1 \le i \le l)$ (see Fig. 2.1).



We denote Δ the set of extremal points (vertexes) of $\sum_{i} (1 \le i \le l)$. Put $\Delta = \{(j_i, d_{j_i}); i=0, 1, \dots, l\}$, where $m = j_0 > j_1 > \dots > j_i = k$.

Definition 2.1. The *i*-th characteristic index σ_i is defined by $\int \sigma_0 = +\infty$,

(2.4)

 $\sigma_i = (d_{j_{l-1}} - d_{j_l})/(j_{i-1} - j_i) \quad ext{for } i = 1, 2, \cdots, l.$ From the definition $+\infty = \sigma_0 > \sigma_1 > \sigma_2 \cdots > \sigma_l > 1.$

Remark 2.2. σ_1 is a generalization of the irregularity of characteristic elements in Komatsu [1]. Characteristic indices can be defined for more general operators.

§ 3. Theorems. In order to state theorems, we consider functions of several complex variables with an asymptotic expansion with respect to one of them. Put $S=S(a,b)=\{z_0 \in C^1; a < \arg z_0 < b\}, U=\{z \in C^{n+1}; |z_0| < r_0, |z_i| < r \ (1 \le i \le n)\}, U'=\{z' \in C^n; |z_i| < r\} \text{ and } U_s = (\{|z_0| < r_0\} \cap S) \times U'.$

Definition 3.1. Let f(z) be holomorphic in U_s . A formal power series

(3.1)
$$\sum_{n=0}^{\infty} a_n(z')(z_0)^n/n!,$$

where $a_n(z')$ $(n=0,1,\cdots)$ are holomorphic in U', is said to represent f(z) asymptotically in U_s , if for any N

No. 8]

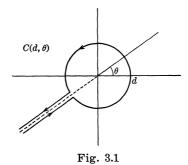
(3.2)
$$|z_0|^{-N} \left| f(z) - \sum_{n=0}^N a_n(z')(z_0)^n / n! \right|$$

tends to zero uniformly on any compact set in U' as z_0 tends to zero in S.

The asymptotic relationship of the definition is usually written in the form

(3.3)
$$f(z) \sim \sum_{n=0}^{\infty} a_n (z') (z_0)^n / n!$$
 as $z_0 \to 0$ in U_s .

By $\hat{\mathcal{O}}(U - \{z_0=0\})$ we denote the set of holomorphic functions on the universal covering space of $U - \{z_0=0\}$ and by $\tilde{\mathcal{O}}(U \times (|\lambda| > \Lambda))$ the set of holomorphic functions of (n+2)-variables (z, λ) on the covering space of $U \times (|\lambda| > \Lambda)$. By $C(d, \theta)$ (d>0) simply $C(\theta)$ we denote a path in λ -space, which starts at $\infty \exp(i(-\pi+\theta))$, goes to $d \exp(i(-\pi+\theta))$ straightly, goes around the origin once on $|\lambda|=d$ and ends at $\infty \exp(i(\pi+\theta))$ (see Fig. 3.1).



Theorem 3.2. Let S=S(a, b) be a sector with $(b-a) < \pi/(\sigma_l-1)$ and $(\pi+b-a)/2 < \theta_1 < (\pi\gamma_1)/2$, $\gamma_1 = \sigma_l/(\sigma_l-1)$. Then there are functions $u_{0,s}(z)$, $g_{1,s}(z) \in \tilde{\mathcal{O}}(U - \{z_0=0\})$ in a neighbourhood U of z=0, $U \subset \Omega$, such that

(3.4)
$$\begin{cases} L(z, \partial_z) u_{0,s}(z) = f(z) + g_{1,s}(z), \\ u_{0,s}(z) \sim \hat{u}(z) \quad as \ z_0 \to 0 \ in \ U_s, \\ g_{1,s}(z) \sim 0 \quad as \ z_0 \to 0 \ in \ U_s. \end{cases}$$

Here $g_{1,S}(z)$ is represented in the form, if $|\arg z_0 + \theta| < \pi/2$,

(3.5)
$$g_{1,s}(z) = \frac{1}{2\pi i} \int_{G(\theta)} \exp(\lambda z_0) G_{1,s}(z,\lambda) d\lambda,$$

where $G_{1,S}(z, \lambda) \in \widetilde{\mathcal{O}}(U \times (|\lambda| > \Lambda))$ and satisfies (3.6) $\sup_{z \in U} |G_{1,S}(z, \lambda)| \leq A \exp(c' |\lambda|^{1/\gamma_1})$

and if
$$|\arg \lambda + (a+b)/2| < \theta_1$$
,
(3.7) $\sup_{z \in U} |G_{1,s}(z,\lambda)| \le A \exp(-c |\lambda|^{1/\gamma_1})$.

 Λ , A, c' and c are positive constants.

Remark 3.3. It follows from well-known Borel-Ritt theorem for asymptotic series that there exist $u_{0,s}(z)$ and $g_{1,s}(z)$ satisfying (3.4),

but we do not use it. It is important in Theorem 3.2 that $g_{1,s}(z)$ is represented in the form (3.5) by $G_{1,s}(z, \lambda)$ with estimates (3.6) and (3.7).

Now let us cancel $g_{1,s}(z)$. To do so we put a sufficient condition on $L(z, \partial_z)$:

(3.8) Condition 1. For
$$(i, d_i) \in \mathcal{A}$$
 $(i > k), d_i = s_i$ and
 $\prod_{\substack{(i,s_i) \in \mathcal{A} \\ (i,s_i) \in \mathcal{A}}} a_{i,s_i}(0, \xi') \equiv 0.$

Theorem 3.4. Suppose that $L(z, \partial_z)$ satisfies Condition 1. Let S = S(a, b) be a sector with $(b-a) < \pi/(\sigma_1-1)$. Then there is a function $u_s(z) \in \tilde{O}(U - \{z_0=0\})$ in a neighbourhood U of z=0 such that

(3.9)
$$\begin{cases} L(z, \partial_z) u_s(z) = f(z), \\ u_s(z) \sim \hat{u}(z) \quad \text{as } z_0 \to 0 \text{ in } U_s. \end{cases}$$

Let us give an application of Theorem 3.4. Let us regard the operator $L(z, \partial_z)$ as an operator $L(x, \partial_x)$ with analytic coefficients on a domain $\Omega_R = \Omega \cap \{ \text{Im } z = 0 \}$ in \mathbb{R}^{n+1} by the restriction. We denote x by the point in \mathbb{R}^{n+1} . We consider Cauchy problem in Ω_R ,

(C.P)_R
$$\begin{cases} L(x, \partial_x)u(x) = \{(\partial_{x_0})^k - A(x, \partial_x)\}u(x) = f(x), \\ (\partial_{x_0})^i u(0, x') = u_i(x'), \quad 0 \le i \le k-1. \end{cases}$$

In general, $(C.P)_R$ is not solvable. But we have

Theorem 3.5. Suppose that $L(x, \partial_x)$ satisfies Condition 1 and f(x)and $u_i(x')$ $(0 \le i \le k-1)$ are analytic in x and x' respectively in a neighbourhood of the origin. Then $(C.P)_R$ has a solution u(x) in a neighbourhood V of x=0, which is C^{∞} in V and analytic in $V-\{x_0=0\}$. Moreover we have

(3.10) $|(\partial_{x_0})^{\alpha_0}(\partial_{x'})^{\alpha'}u(x)| \leq AC^{|\alpha|}(\alpha_0!)^{\gamma_1}(\alpha'!)$ for $x \in V$, where $\gamma_1 = \sigma_t/(\sigma_t - 1)$, α denotes multi-indices and A and C are constants.

In order to construct the functions $u_{v,s}(z)$ and $u_s(z)$, we make full use of functions in the form

(3.11)
$$\frac{1}{2\pi i} \int_{C(\theta)} \exp(\lambda z_0) V(z, \lambda) d\lambda$$

and investigate equations with a parameter λ . This method of construction of functions is slight similar to that used in Ouchi [2], [3]. The details and proofs will be published elsewhere.

References

- Komatsu, H.: Irregularity of characteristic elements and construction of null solutions. J. Fac. Sci. Univ. Tokyo, 23, 297-342 (1976).
- [2] Ouchi, S.: Asymptotic behaviour of singular solutions of linear partial differential equations in the complex domain. Ibid., 27, 1-36 (1980).
- [3] ——: An integral representation of singular solutions of linear partial differential equations in the complex domain. Ibid., 27, 37-85 (1980).