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YX’- (X-}- Y)(Xa -+- Y’) O,
c ,’-}-a,s+rb q- ,, Z=/=O,
ZY+YZc+Xc=/=O

Then one o our main results is"
Theorem 1, There is a 2:1 map of B onto

The purpose of this note is to report some results on the number
of unramified SL2(F) extensions of some algebraic function field of
characteristic 2. Detailed accounts are stated in [1] and [2].

0. Main results. Let k be an algebraically closed field of
characteristic 2. Let K-k(x, y) be an algebraic function field over k
defined by y-y-x’-x ( e k). Let K be the maximum unramified
Galois extension of K and let A., be the set of GL.(k) equivalence
classes of representations of Gal (K/K) onto SL2(F). We put

(X, Y,Z, ) ePA XZ+YZ%(cX+ Y)X-O,
Ygz+ZX +cYX

-+- (Xq-a Y)(YsX-X’) O,

By making use of this theorem and some other considerations, we
can show the following

Theorem 2.
736 otherwise.

Corollary to Theorem 2. The number of unramified SL2(F4)
extensions of K is 320 if a=0 and 368 otherwise.

1. Representations of Gal (K/K) into GLn(Fq). Let K be the
adele ring of K, let (C) be the integer ring, and let lI be the unit group
of (C). We put Gn- GL((C)) \GL(K)/GL(K). Then, the map GL(K)
(uj)(uj)e GLn(K) induces a map F(q) of G into itself. We

denote by Rep(GL(F)) the set of GL(k) equivalence classes of
representations of Gal (K/K) into GL(F). Then we have"

Proposition 1.1. There is a one to one correspondence between
the set G() of F(q) fixed points of G and Rep (GL(F)).

For any element R of GL(K), we denote by [R] the element of
G whose representative is R.

Corollary to Proposition 1.1. We put
S={[R] e G satisfying det R= 1}.
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Then there is a one to one correspondence between S() and
Rep (SL(Fq)).

Though our result is written in the terminology of adeles, the
above proposition is essentially equivalent to the result in [3].

Definition 1.2. Let R be an element of SL2(K). Then an element

of K* is said to be a maximal element of R if [R]= [(0 So )]r andT0

degfo>=degfforanyelementroK*satisfying[R]=[(ro rS_)l. We

choose and fix a, maximal element of R and denote it by max R.
Definition 1.:. An element R of SL2(K) is semi-stable (resp

stable) if the degree of max R is not positive (resp negative). We
also say an element of S is semi-stable (resp stable) if its representative
is semi-stable (resp stable).

Proposition 1.4. An element [R] of ,.qq is stable if and only if
[R] corresponds to an irreducible representation.

For a ring A, we put
T(A)=(u=(u) e GL(A); u=0 if

We introduce an equivalence relation on GL(K): For any two
elements a, b o GL(Ka), ab if and only if there are elements u e T((C))
and v e T(K) satisfying b=uav.

We need the following propositions to describe Rep (SL(F)).

Proposition 1.5. Let r be an element of K*. Let R-= r_
(i= 1, 2) be two elements of SL(K) which have r as a maximal element.
Then, RR if and only if [R]= [R].

Proposition 1.6. Let the genus of K be 2. Then, for every

corresponding to P- for some prime P of K.

2. The structure of B(q). Now let r be an element o K*
corresponding to a divisor of the orm P- with a prime divisor P of
K. We put

Br(q)= R=
0 r- ;[R]eS j/

B(q)= 0 r- ;there are non zero elements u e M((C)) and

v e M(K) satisfying R)v=uR
/

We assume that the genus o K is 2. Then it follows rom
Proposition 1.6 that every stable element u of S can be expressed as

u=[( rS_.)] with some element r. Hence noting Corollry to Pro-

positions 1.1 and 1.4, to study irreducible representations o Gal (K/K)
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into SL.(F), first we must study B(q). The main result of this section
is"

Proposition 2.1. For any r and q, there are q+l polynomials
h, {f)_ of k[X, X2, X, Y,..., Y] and q+3 polynomials {g)_/
of k[X, X, X, Y, ., Y, Z, ., Z_] satisfying the following con-
ditions" There is a one to one correspondence between B’(q) and the.
set

a, a) e P h(a, a, a, b, ..., b) f,(a, a, a, b, ..., b)=O,
B= g(a, a, a, b, ., b, u, ..., u_)=O 1i_q+2

for some (b, bq, u, ..., Uq_) o Peq
and B(q) is mapped bi]ectively to the following subset B of B"

B--{(a, a, a) e B gq+(a,
Remark 2.2. If q_>_4, we can take h--0.
). Representations of Gal (K/K) onto SL(F). In this section,

we characterize representations of Gal (K/K) onto SL.(F). Let k be
an algebraically closed field of characteristic 2. Let G be a finite
group, and let p be a representation of G into SL.(k). Let V be a G-
module associated with p. Let e,e be a basis of V. We define
elements u, ., u/ of V(R) by u e(R). (R)e, u= e(R). (R)e(R).

(R)e, u--- e(R). (R)e. (R)e.(R). (R)e, u = e.(R). (R)e.. Then the
i,j

vector space spanned by u, u, ..., u/, is also a G-module.
Proposition }.1. Let G be a subgroup of SL(F,). Let p be a

representation of G into SL.(k). Then p(G)-SL(F,) if and only if
V 0 and V-- O.

We put

A(4)= 0 - ;JR] e and the image of a representation

corresponding to R is isomorphic to SL.(F)
Then, using’ the above proposition, we obtain"
Corollary to Proposition 3.1. Let K be an algebraic function

field of characteristic 2 and of genus 2. Let P be a non Weierstrass
point of K, and let r be an element of K* corresponding to P-. Then,

A(4) B(4)-- (B(4) ( B’(2)).
4. The outline of the proof of Theorem 1. Let K be an

algebraic function field stated in 0. Then the genus o K is 2 and K
has only one Weierstrass point P which is the extension of the
denominator of (x) in k(x) to K. First"

Proposition 4.1. Let r be an element of K* corresponding to

P=. Then if [R]= r_ is an element of S(), [R] is not stable.

Next letP be a non Weierstrass point, and let r be an element o K*
corresponding to P;. Then, applying Proposition 2.1 and Corollary
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to Proposition 3.1 to this case, we obtain"
Proposition 4.2. There is a one to one map Cr of Ar(4) to the set

YX +(X+aY)(Y +Xa) O,
YZ +ZX +cYX +(X+a Y)(YX +#XO O,
c=2+#2s+a2+2, Zg:O, aZY+YZc+Xc:/:O

To complete the proof, we need the following two lemmas
Lemma 4.3. Let P, P’ be prime divisors of K which are extensions

of a prime divisor Q of k(x). Let r (resp r’) be an element of K* cor-

responding to P- (resp P’-9. Let R=( rS_) be a stable element.

Then [R]= r’ with some s’ of K.
Lemma 4.4. Let P be a non Weierstrass point and let r be an

r]-1

.qF() Then there is only one element/ of k differentelement and [R] e

from satisfying [R]- r;1
Proof of Theorem 1. For any element of k, there is a prime

P satisfying PP’P:-(x-). We choose and fix such a prime and
denote it by P. Now let (a, a., a, ) be an element of B. Then there.
is a prime P and ((a.a. a)) is an element of A(4). Conversely let
[R] be an element of A(,). Then it follows from Proposition 1.5
that there is an element r of K* which corresponds to a divisor of the

orm P- with some prime P satisfying [R]- r_ It follows

from Proposition 4.1 that P must be a non Weierstrass point. Then
it ollows rom Lemma 4.3 that there is an element o k satisfying

r; Then it follows from Proposition 4.2 that the

surjectivity holds. The fact that this map is 2" 1 is easily proved
using Proposition 1.4 and Lemma 4.4.
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