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Some Examples of Analytic Functionals
with Carrier at the Infinity

By Mitsuo MORIMOTO and Kunio YOSHINO
Department of Mathematics, Sophia University

(Communicated by K.Ssaku YOSIDA, M. J. A., Oct.. 13, 1980)

In this note we propose some examples of analytic functionals
with carrier at the infinity. In particular, we will give an example
of a Fourier hyperfunction with support at the infinity.

We confine ourselves to the one dimensional case and follow the.
notations in Morirnoto [2] and Morimoto-Yoshino [3]. Let L--A +iK,
i=/-1, A=[a, co), K=[-k,k] and k’eR. We denote by Qb(L k’)
the space of all continuous functions f on L holomorphic in the interior
of L which satisfy the following condition:
( 1 ) sup (If()[ exp (k’) -+i e L}< co.

Taking the inductive limit following the restriction mappings as $ 0
and ’ $ 0, we define the fundamental space
( 2 ) Q(L to’)--lim ind Qb(L, k’ + ’),

0

where L, [a-, c)+i[- k-, k+]. A continuous linear functionI
S on the space Q(L;k’) is, by definition, an analytic functional with
carrier in L and of exponential type k’. Q’(L k’) will denote the dual
space of Q(L; k’). An analytic functional S is said to be with carrier
in oo+iK if S e Q’([a, oo)+iK k’) for every a0.

We recall three transformations of analytic functionals
1) The Cauchy transformation of S e Q’(L; k’) is defined by the

following formula"

(3) (r)=2i-ls" exp (- (r-)) .
It is known that (r) is a holomorphic function on C\L, satisfying,
ny positive numbers , r and ’ with 0e r,
( 4 ) sup {I() exp (--(k’-F ’)s) =s+it e L\L}< co

and that we have the inversion formula

(5) (S, f}=-f (r)f(r)dr
d

or every f e Q(L;k’), where e0 is sufficiently small (Theorems 3.2
and 3.3 in Morimoto [2]).

2) The Fourier-Borel transformation of S e Q’(L k’) is defined
by
( 6 ) S(z)= (S, exp (z)}.
It is known the Fourier-Borel transformation " S-* establishes a
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topological linear isomorphism of Q’(L;k’) onto Exp ((--c,--k’)+iR;
L), the space o all holomorphic functions F on the left half plane
(--c, --k’)+iR which satisfy the condition" For any 0 and ’0,
there exists a constant C_>0 such that
( 7 ) ]r(z)]<:C exp ((a-Dx+(k+D
or z=x+iy e (-c,--k’--’)+iR (Theorem 5.1 in Morimoto [2]).

3) Suppose 0gkz and k’l. Then the Avanissian-Gay trans-
formation Gs(w) o S e Q’(L; k’) can be defined as ollows
( 8 ) Gs(w)= (S, (1-we)-).
The Avanissian-Gay transformation G" SGs establishes a topological
linear isomorphism of Q’(L;tc’) onto C)0(C\exp (--L) ;/’), the space of
all holomorphic functions on C\exp (--L), which vanish at w= c and
satisfy the following condition" For any with 0--k and any

’ with 0’l-k’, there exists a constant C_>_0 such that
( 9 ) 1GAw)I<=C lwl
for w eC\(O) with k+t__<argw_<_2--k--e (Theorem 6 in Morimoto-
Yoshino [3]). We have the inversion ormula

1(10) (S, f)=---Z-(o Gs(e-)f()d

for f e Q(L; k’), where >0 is sufficiently small. The Laurent expan-
sion of Gs(w) can be given by the Fourier-Borel transformation S o
S as ollows"

(11) Gs(w)=-)_ S(-n)w for [w[>e-.
=1

Example 1. Suppose L=[a, o)+i[-/2, u/2] and k’ e R. Let
us define an analytic functional T by the formula

(12) T" () exp (e)d,
2zri

where >0 is sufficiently small. It is clear that T Q’(L; td) for any
a and any k’. Let us calculate the Fourier-Borel transformation T
the analytic unctional T. Putting u=--e:, we have

1 exp(z)exp(e:)d(13) T(z)=---
1 exp (zS) exp (e:)d5
2i
1 (0+)2zi

(-- u)- e- udu

F(I_ z)-,
where the last equality results from the Hankel integral ormula or
the F function.

By (5), we have the ollowing estimate o the F function" For
any R e R, M0 and 0, there exists C>__0 such that
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IF(z)]-<C exp --Mx+ --+ lYl or x=Rez>R.

I we put G(w)=exp (w-9-1, then it is clear
G(w) e )0(C\exp ((- c, -a]+i[-zr/2, /2]) k’)

or every a e R and k’1 and hat we have

}-,-o-:-_,:l0 ()exp (e)d- 2il f0 ()G(e-)d"

Therefore, the Avanissian-Gay transformation Gr(w) o T is the unc-
tion G(w)"
(14) Gr(w) exp (w-) 1.
The ormul (11) recluces in this case to the ollowing well known
Taylor expansion"

1-w- forexp (w ) 1
n

The analytic unctional T defined above is an analytic unctional with
carrier in c+i[--/2, u/2]. Considering the unction exp (e:), or
every M0 we can construct similarly an analytic unctional with
carrier in c +i[-- r./2M, :/2M]

Example 2. Let L and k’ be as in Example 1. Suppose 20 and
define an analytic unctional T by

(15) T" 1 f () exp (, sinh )d5-i- L

It is clear that T e Q’(L;k’) or any a and k’. Let us calculate the
Fourier-Borel transformation of the unctional T. Putting u=--e:,
we have

1 exp(z) exp(2sinh)d06) T(z)---2--
1 exp (zS) exp (2 sinh )d

2i 3
(--u)- exp ((/2)(u--u))du

_j_:(2),
where the last equality results rom the Sonine integral ormula for
the Bessel unetions.

By (5), we have the ollowing estimate of the Bessel unctions"
For any R R, MO and 0, there exists C_>_0 such that

[J(2)[Cexp --Mx+ -+ [y] for x=Rez>R.

If we denote by G(w) the Avanissian-Gay transformation of the
functional T, we have by (11)

(17) GT,(W)-- , Jn(2)w-n:exp ((,/2)(w--w)) J_m(.)W
n=l
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for ]w])O, where the second equality results from the generating
formula of the Bessel functions.

Example 3. Put H,,={=+i e C; >=M, [221__<}. Suppose
q e Q([a, oo) k’) and let A,=[a-, oo)+i[--, ] be a definition domain
of the function 9. If we choose a number M sufficiently large, we can
assume the set H,, is strictly contained in A. Therefore we can
define an analytic functional T as follows"

(18) T" 9--- 9() exp (exp ())d{,
2i ,,

where M is a sufficiently large number. By the Cauchy integral
theorem, we can see the integral (18) is independent of such M. T is
an analytic functional belonging to Q’([a, oo), k’) for any a e R and
k’ e R. For any t0, the function exp (--t ) belongs to Q(R; k’) for
every k’ e R. We have

(T, exp (-t)}= 1 exp (--t) exp (exp ())d---- H,

1 1 exp(--tr) exp(e)d
2i 2

1F(1+ t)-:/: 0,
2

where L is given in Example 1 and we used (13). Therefore the
analytic functional T does not vanish identically. If we consider T as
a Fourier hyperfunction (Kawai [1] and Sato [4]), T is a Fourier hyper-
function whose support is concentrated to the infinity: supp T

Let us define an entire function F as follows"
F(r) 2i (r)

1 exp (--(r--)) exp (exp )d.
2i ,

Then the unction F satisfies the condition (4) with L-A-[a, c) and
we have by (5)

1 (5) exp (exp 5)d5

1 f. ?()F()d
2i

for e Q([a, ) k’), where M is a sufficiently large number and is a
sufficiently small positive number.

The explicit orm of the unction F(r) is not known to us. We
cannot calculate explicitly the Fourier-Borel transformation and the
Avanissian-Gay transformation of the unctional T. Similarly, the
function exp ( sinh 5) gives another Fourier hyperfunction with sup-
port at the infinity.

Consider now the n-dimensional case. Let us define a functional
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T e Q’(Rn; 0) aS ollows

(, ..., )
8HM, X X HM,

X exp (exp +exp +... +exp )dld2... dn
for 9 e Q(R’; O)=(Dn), where D is the radial compactification of R
(Kawai [1]). Then T is Fourier hyperfunction whose support is
concentrated to a point at the infinity namely, supp T-- {(1, 1, ., 1)oo}.
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