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Integration of Correspondences and a Variational
Problem with Operator Constraint*)

By Toru /IARUYAMA
Department of Economics, Keio University

(Communicated by Shokichi IY)NAGA, M. J. A., May 12, 1980)

1. Introduction. Let " [0, 1]X R+--->R and 0" [0, 1]--R+ be two
fixed mappings, and consider the following variational problem with
a control variable ’[0, 1]z--.R+

Maximize fl fl u(s, t, x(s,

( ) subject to

fl x(s, t)ds<__(t) for all t e [0, 1].

(R+ designates the nonnegative orthant of R.)
We can easily give this problem a lot of economic interpretations.

For example, x(s, t) can be interpreted as an allocation of various re-
sources mong agents s e [0, 1] over time-interval [0, 1]. The available
quantities of these resources at each time t e T are represented by (t).
Then (.) is a 2ormal expression of the problem to maximize the sum
of utilities of all agents over time subject to the resource-constraint.
(Cf. Maruyama [10] for a related problem.)

In this paper, we are going to establish a set of sufficient condi-
tions which assures the existence of an optimal solution for this kind
of variational problem. Several new results on infinite dimensional
Ljapunov measures and the integration theory of correspondences
(= multivalued mappings) will also be presented as indispensable pre-
parations or our main purpose.

Arkin-Levin [1] examined a similar problem and I am very much
indebted to them for various ideas.

2. Abstract integrals of correspondences. Throughout this sec-
tion, /2 stands for a compact Hausdorff space, and for Banach
spaces, and C(9, ) for the set of all the continuous mappings f 9--..
C(O, ) is a Banach space whose topology is defined by the sup-norm:

Ilfll=sup

We designate by _(, ) the space of all the bounded linear op-
erators on into . Let

,7 The earlier version of this paper was read at the annual meeting of the
Japan Association of Economics and Econometrics in 1979. The financial support
from Keio Gijuku Academic Promotion Funds is gratefully acknowledged.
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T: C((2, )-+
be any bounded linear operator. Then T is dominated i.e. there exists
a positive regular Borel measure r on :2 such that

( 1 Tf =_.[ f(oo) d for all f e C(:2, ).

Accordingly, there exists uniquely an _C(, O)-valued regular Borel
measure r with finite variation Irl such that

( 2 ) Tf--[ fdr or all f e (9, ),
J

and the least regular Borel measure which satisfies (1) is identical with

Irl. Since C(9, ) is dense in

IIo <
the operator T corresponding to r can be extended as a bounded linear
operator on L(Irl) into . For the detailed discussion about these
concepts and results, consult Dinculeanu [6, 19].

Proposition 1 (Diestel-Uhl [5, pp. 101-102]). Lt (X,, m) be

finite measure space and be Banach space such tha and ’ have
,he Radon-Nikodm property. A subse$ KcL(m) is relatively weakly
compact if

( ) K is bounded,
(ii) K is uniformly integrable, and
(iii) for every E e , the se

i feletivel weald eomaet.
Using this proposition, we can get: the following theorem as a gen-

eralization of Castaing [.], where F is assumed to be constant.
Theorem 1. Let be Hilbert paee, 1-’" D---- be eompaet-

eoex-wleg meareble eorrepodeee, ad r be the et of all
measurable eleetio ot’ F. I F is integrablg boded i.e. there
exists some e L(I:I) such that

sup f(o)II <=(o) a.e.,

then r is weakly compact and convex in
The following theorem is an easy consequence of Theorem 1.
Theorem 2. Under the assump$ions in Theorem 1, T(r) is

weakly compact and convex in .
3. A variational problem with operator constraint. Let us begin

by specifying some notations!
S, T" compact metric spaces.

/" non-atomic positive Radon measure on S.
," non-atomic positive Radon measure on T.
F S T >>R: compact-valued measurable correspondence.
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u: (ST)R-+R: Carathodory’s function; i.e. measurable on
S T for every fixed x e R and continuous on R for almost every fixed
(s, t) e S T.

g (S T) R--.R Carathodory’s unction.
o" T-R e L().
In this section, we are going to consider the following variational

problem (P) and to find out a set of sufficient conditions which guaran-
tees the existence of the optimal solutions.

Maximize u(s, t, x(s, t))d([(R))
JST

subject to
(P)

by

a) | g(s, t, x(s, t))dz(s)<__o(t) a.e. ()
J

b) x:S T-R is a measurable selection of F.
Define a bounded linear operator

H" C(S T, R 1)-.R L(,)

e C(S T, R),

a(s, t)d(/(R),),
e C(S T, R), f--(, fl).

This H can be represented by A:(RTM,RL(,))-valued regular Borel
measure on S T of finite variation. Clearly is characterized by

r(E)(1, 0,..., 0)--(f zd(/(R),), 0,.., 0)
(4)

r(E)(0, 1, 0,..., 0)-- (0, zd(/(R)), 0,..., 0)

for every Borel set EcS T, where is the characteristic function
of E, and is the Dirac measure concentrating at t e T.

The operator H can be extended as a bounded linear operator oa
L+(r I) L+(p@,) into R L(,).

2 Consider the mapping f S T RR R defined by
( 5 ) f(s, t, x)= [u(s, t, x), g(s, t, x)],
and define the correspondence A S T--R by
( 6 ) A(s, t)= f(s, , (s, )).

Then f is a Carathodory’s function because both of u and g are
so. Since F(s, t) is a compact-valued measurable correspondence and

f is a Carathodory’s function, A is also a compact-valued measurable
correspondence. Hence, so is the correspondence A(s, t)=co A(s, t).

We designate by (resp. ) the set of all measurable selections
of A(s, t) (resp. A(s, t)). Since the measurable correspondence A is

the relation"
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compact-convex-valued, H() is weakly compact by Theorem 2, pro-
vided that is integrably bounded. (A simple sufficient condition for
z/to be integrably bounded is that the functions

(s, t)= sup u(s,
xI’(s,t)( 7 )

(s, t) sup g(s, t, x)

are summable with respect to
Since H() is weakly compact,

K----_ {(a, b(t)) e H() b(t) (t)}
is also weakly compact. Therefore the projection of K into R is com-
pact and hence has the greatest element a*. Pick up any b*(t) e L(,)
such that (a*, b*(t)) e K.

If we can prove the relation
( 8 ) H()-H(),
then there exists a measurable selection *(s, t) of A(s, t) which satisfies
H(*)-(a*, b*). Since the set
( 9 ) {(s, t, x) e S T Rlf(s, t, x) 2*(s, t), x e F(s, t)}
is clearly measurable in S T R, there exists a measurable selection
x*(s, t) of F(s, t) such that
(0) [u(s, t, x*(s, t)), g(s, t, x*(s, t))] *(s, t).
Hence we can conclude that x* is clearly an optimal solution of the
problem (P).

Thus, it remains only to establish (8).
3 Let (X, ’) be a measurable space and be a Banach space.

If m C is a countably additive -valued measure, then there exists
a nonnegative countably additive (scalar-valued) measure 7 such that

(E) 0 m(E
Using these notations, we can summarize the result of G. Knowles.

Proposition 2 (Knowles [8]). The following two statements are
equivalent.

( ) m is L]apunov.

(ii) If 7(E)0, then the mapping f[ fdm is not in]ective on
J

L(E)= {f is 7-essentially bounded and f(x)=0 on E}.
As an application of this proposition, we can prove the next

important theorem.
Theorem :. r is L]apunov.
Since the correspondence zl S T--R is compact-convex-

valued, the profile (/(s, t))’" of z/(s, t) is not empty for all (s, t) e S T.
If we define the correspondence " ST--R/ by

3: (s, t)-((s, t))",
then ] is also measurable. On the other hand, if is integrably
bounded, then is weakly compact and convex by Theorem 1. Hence
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=/=. In fact, we can prove the simple relation i--ff (cf. Castaing
[3], Maruyama [11, 5]). Furthermore, combining Theorem 2.6 of [1]
and our Proposition 2, we can get the following crucial result.

Theorem 4. If 1 is integrably bounded, then

S z/dr=; dr.
ST ST

Corollary 1. Letf e Ll(p(R),), g e L(Z@,) (i= 1, 2, ., p). Then
for any measurable mapping

SXT-- (, , .,) Rg =1

there eit irwise disjoint measurable et McSx T (= 1, 2, ., )
such that

P
SXT=M

Let (a(s, t), (s, t)) e L(@,)XL(@,) be an element o .
Then by the parametric version o the Carathodory’s Theorem (cf.
Castaing-Valadier [4, pp. 100-102], Maruyama [11, 4]), there exist

(a(s, t), (s, t)) e ff (i= 1, 2, ..., l+ 2)

such that

(s, t)= 7-: a(s, t)(s, t)
i=l
/+2

(8, t)= q(s, t)(s, t).
i=l

Hence, by Corollary 1, there exist mutually disjoint measurable sets
M, M., ., M such that

ST=M
/+2

o(s, t)d(/(R),) a,(s, t)a,(s, t)d(z(R),)
ST ST , (s, t)z,(s,

SxT i=1

5+2

a(s, t)fl(s, t)d#
Si=l

If we define

then

fl(s, t)dz=

=j-- (s, t)z(s, t)d,.

/+2

(s, t)= (8, t)z(s, t)
/+2

(s, t)=E (s,, t)z,(s, t),
i=l
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(, ) e A and H(, )-H(G ).
Thus we have completed the proof of (8).
Theorem 5. Our variational problem (P) has a solution if A is

integrably bounded. (Cf. (7).)
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