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1o Introduction. Let x(t) be a temporally homogeneous inde-
pendent increments process with only negative jumps, whose cumulant
is

where s>_0, b !0 and the Livy measure//is a measure which makes
the above integral converge. We define -inf ( x(t) 0} and x(t),
t e [0, ), is the process obtained by killing x(t) at the moment . It is
well known that x(t) is a Markov process and the resolvent R of the
process x(t) is given by

Rf(x)=E= : e-f(x(t))dt

or 0 and bounded measurable function f(x). Here/!7 and P are
respectively conditional expectation and conditional probability under
the condition x(0)=x.

In [3] it was proved for 0, x0

Rf(x)=R(x) : e-’)f(y)dy- R(x- y)f(y)dy,

where p() is a solution of K(s)----,, and the Laplace transform of R(x)
is

.f: 1 fore-"R(x)dx
K(s)- 2

8>p().

We call R(x) resolvent function and it was shown there exists R(x)
=limR(x), which we call potential function. I we put p=limp(),

2-0 2-0

it is obvious

e-==R(x)dx- 1 for s>p.
K(s)

As application of this result [2], we obtain the formulas

E=(:)-- R(x) --S: R(y)dy,
P

g=(x()<z, < o)

=R(x) [ e-’H(-c, z-y)dy- R(x- y)II(-c, z--y)dy,

where//(-- c, --)= /l(d).
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In the present note we give the asymptotics of R(x), () and
P(x()<z) when x--.c especially for one-sided stable processes with
only negative jumps; b-O, II(du)=du/lul/ (uO). They are all La-
place transformed and Tauberian theorems [1] are applied for the
proofs. Although some of these need certain tricks, but we omit here
the details.

Remark. In [3] it is not investigated the case when K(s)0 for
all s0. But investigation analogous to [3] makes us convince

Rf(x) R(x- y)f(y)dy and e-R(x)dy
K(s)-

E() --I: R(y)dy,
P(x()<z, < .[: R(x y)H(-- z-- y)dy.

These formulas are used in the following case 0a1, a0.
2. The assymptotics when x. The Lvy measure H(dx)=

1

1. K(s)=as- F(1--a) s (0al)

(i) a>O R(x) eX csina= Xa_ (F(1-cO 11/(1-a)K’(p) ao

=0 R(x)=-- o sin oz x_,

(ii)

X2(a--1)

(iii) for every a P(x()z)l--o.l-z.
K(s) =as+ s log s (one-sided Cauchy process)

) R(x) e" 1 p=e_,
K’(p) log x

(ii)

(iii)

G() x
log x

Px(X() < z) 1--1-- log [z[+ r+e’log x

1-- log
log x

(," Euler constant).
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K(s) --as-

a0

(ii) a>_0

a<0

(iii) a>0

a--0

F(1-a) s (l<a<2)

R(x) 1 + 1
a aa(l--)

R(x)=- o sin or x_,

R(x).- eX + 1
K’(p) a

Ex()-- c,

EA) x
a

P= F(1-- o)

1P(x()< z)
aa(a- 1)x"-

P(x()<z)l-(o- l) Izl

a< 0 P(x() < z) c(z) 1
a aa(-l) Izl-_1 [ (e_,_ l)Ii(_ c, z_ y)dy
a

where c(z)=--1][ e_,
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