50. The Asymptotics of the Potential Functions of One-Sided Stable Processes

By Kimio KAZI

Section of General Education, Keio University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1980)

1. Introduction. Let x(t) be a temporally homogeneous independent increments process with only negative jumps, whose cumulant is

$$K(s) = \frac{1}{t} \log Ee^{sx(t)} = as + \frac{b}{2}s^2 + \int_{-\infty}^{0} \left(e^{sx} - 1 - \frac{sx}{1 + x^2}\right) \Pi(dx),$$

where $s \ge 0$, $b \ge 0$ and the Lévy measure Π is a measure which makes the above integral converge. We define $\zeta = \inf \{t; x(t) \le 0\}$ and $x^{\circ}(t)$, $t \in [0, \zeta)$, is the process obtained by killing x(t) at the moment ζ . It is well known that $x^{\circ}(t)$ is a Markov process and the resolvent $\mathbf{R}^{\circ}_{\lambda}$ of the process $x^{\circ}(t)$ is given by

$$\boldsymbol{R}_{\lambda}^{0}f(\boldsymbol{x}) = \boldsymbol{E}_{\boldsymbol{x}} \int_{0}^{\zeta} e^{-\lambda t} f(\boldsymbol{x}(t)) dt$$

for $\lambda > 0$ and bounded measurable function f(x). Here E_x and P_x are respectively conditional expectation and conditional probability under the condition x(0) = x.

In [3] it was proved for $\lambda > 0$, x > 0

$$\boldsymbol{R}_{\lambda}^{0}f(x) = \boldsymbol{R}_{\lambda}(x) \int_{0}^{\infty} e^{-\rho(\lambda)y} f(y) dy - \int_{0}^{x} \boldsymbol{R}_{\lambda}(x-y) f(y) dy,$$

where $\rho(\lambda)$ is a solution of $K(s) = \lambda$, and the Laplace transform of $R_{\lambda}(x)$ is

$$\int_{0}^{\infty} e^{-sx} R_{\lambda}(x) dx = \frac{1}{K(s) - \lambda} \quad \text{for } s > \rho(\lambda).$$

We call $R_{\lambda}(x)$ resolvent function and it was shown there exists $R(x) = \lim_{\lambda \to 0} R_{\lambda}(x)$, which we call potential function. If we put $\rho = \lim_{\lambda \to 0} \rho(\lambda)$, it is obvious

$$\int_0^\infty e^{-sx}R(x)dx = \frac{1}{K(s)} \quad \text{for } s > \rho.$$

As application of this result [2], we obtain the formulas

$$\begin{split} E_x(\zeta) &= \frac{R(x)}{\rho} - \int_0^x R(y) dy, \\ P_x(x(\zeta) < z, \zeta < \infty) \\ &= R(x) \int_0^\infty e^{-\rho y} \Pi(-\infty, z-y) dy - \int_0^x R(x-y) \Pi(-\infty, z-y) dy, \\ \text{where } \Pi(-\infty, z-y) = \int_{-\infty}^{z-y} \Pi(du). \end{split}$$

No. 5

In the present note we give the asymptotics of R(x), $E_x(\zeta)$ and $P_x(x(\zeta) < z)$ when $x \to \infty$ especially for one-sided stable processes with only negative jumps; b = 0, $\Pi(du) = du/|u|^{\alpha^{+1}}$ (u < 0). They are all Laplace transformed and Tauberian theorems [1] are applied for the proofs. Although some of these need certain tricks, but we omit here the details.

Remark. In [3] it is not investigated the case when $K(s) \leq 0$ for all $s \geq 0$. But investigation analogous to [3] makes us convince

$$\begin{split} R^{0}_{\lambda}f(x) &= -\int_{0}^{x} R_{\lambda}(x-y)f(y)dy \text{ and } \int_{0}^{\infty} e^{-sx} R_{\lambda}(x)dy = \frac{1}{K(s)-\lambda} \text{ for } s > 0, \\ E_{x}(\zeta) &= -\int_{0}^{x} R(y)dy, \\ P_{x}(x(\zeta) < z, \zeta < \infty) &= -\int_{0}^{x} R(x-y)\Pi(-\infty, z-y)dy. \end{split}$$

These formulas are used in the following case $0 < \alpha < 1$, $a \leq 0$.

2. The assymptotics when $x \to \infty$. The Lévy measure $\Pi(dx) = \frac{1}{|x|^{1+\alpha}} dx$.

1.
$$K(s) = as - \frac{\Gamma(1-\alpha)}{\alpha} s^{\alpha} (0 < \alpha < 1)$$
(i) $a > 0$ $R(x) \sim \frac{e^{\rho x}}{K'(\rho)} - \frac{\alpha \sin \alpha \pi}{\pi} x^{\alpha-1}$, $\rho = \left\{\frac{\Gamma(1-\alpha)}{a\alpha}\right\}^{1/(1-\alpha)}$,
 $a = 0$ $R(x) = -\frac{\alpha \sin \alpha \pi}{\pi} x^{\alpha-1}$,
 $a < 0$ $R(x) \sim -\frac{\alpha \sin \alpha \pi}{\pi} x^{\alpha-1} - a \left\{\frac{\alpha}{\Gamma(1-\alpha)}\right\}^{2} \frac{1}{\Gamma(2\alpha-1)} x^{2(\alpha-1)}$,
(ii) $a \neq 0$ $E_{x}(\zeta) \sim \frac{\sin \alpha \pi}{\pi} x^{\alpha} + a \left\{\frac{\alpha}{\Gamma(1-\alpha)}\right\}^{2} \frac{1}{\Gamma(2\alpha)} x^{2\alpha-1}$,
 $a = 0$ $E_{x}(\zeta) = \frac{\sin \alpha \pi}{\pi} x^{\alpha}$,
(iii) for every a $P_{x}(x(\zeta) < z) \sim 1 - \alpha \frac{|z|}{x}$.

2. $K(s) = as + s \log s$ (one-sided Cauchy process)

(i)
$$R(x) \sim \frac{e^{\rho x}}{K'(\rho)} - \frac{1}{\log x}, \quad \rho = e^{-a},$$

(ii) $E_x(\zeta) \sim \frac{x}{\log x},$
(iii) $P_x(x(\zeta) < z) \sim 1 - \frac{1}{\log x} \{ \log |z| + \gamma + e^{|z|\rho} \int_{|z|\rho}^{\infty} \frac{e^{-t}}{t} dt - \frac{\log |z|}{\log x} \text{ for sufficiently large } |z|$
(γ : Euler constant).

3.
$$K(s) = as - \frac{\Gamma(1-\alpha)}{\alpha} s^{\alpha} (1 < \alpha < 2)$$
(i) $a > 0$ $R(x) \sim \frac{1}{a} + \frac{1}{a^{2}\alpha(1-\alpha)} x^{1-\alpha}$,
 $a = 0$ $R(x) = -\frac{\alpha \sin \alpha \pi}{\pi} x^{\alpha-1}$,
 $a < 0$ $R(x) \sim \frac{e^{\rho x}}{K'(\rho)} + \frac{1}{a}$, $\rho = \left\{\frac{a\alpha}{\Gamma(1-\alpha)}\right\}^{1/(\alpha-1)}$,
(ii) $a \ge 0$ $E_{x}(\zeta) = \infty$,
 $a < 0$ $E_{x}(\zeta) = \infty$,
 $a < 0$ $E_{x}(\zeta) < z$, $\sim \frac{1}{a\alpha(\alpha-1)x^{\alpha-1}} \left\{1 - (\alpha-1)\frac{|z|}{x}\right\}$,
 $a = 0$ $P_{x}(x(\zeta) < z) \sim \frac{1-(\alpha-1)\frac{|z|}{x}}{a}$,
 $a < 0$ $P_{x}(x(\zeta) < z) \sim \frac{c(z)}{a} - \frac{1}{a\alpha(\alpha-1)|z|^{\alpha-1}}$,
 $= \frac{1}{a} \int_{0}^{\infty} (e^{-\rho y} - 1)\Pi(-\infty, z - y) dy$,
where $c(z) = \frac{1}{\alpha} \int_{0}^{\infty} e^{-\rho y} \frac{1}{|y-z|^{\alpha}} dy$.

References

- W. Feller: An introduction to probability theory and its application. vol. 2, John Wiley, New York (1966).
- [2] В. С. Королюк, В. Н. Супрун, и В. М. Шуренков: Метод потенциала в граничных задачах для процессов с независимыми приращениями и скачками одного знака. Теория вероят. и ее примен., 21, 253–259 (1976).
- [3] В. Н. Супрун и В. М. Шуренков: О резольвенте процесса с независимыми приращениями, обрывающегося в момент выхода на отрицательную полуось. «Исследования по теории случайных процессов», Изд-во Института математики АН УССР, 170–174 (1976).

218