49. Monodromy Preserving Deformation and Its Application to Soliton Theory. II

By Kimio Ueno
Research Institute for Mathematical Science, Kyoto University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1980)

§ 1. Introduction. This is a sequel of the preceding papers [1], [2]. In the previous article [2], the author showed that the multisoliton solutions of the sine-Gordon equation are governed by the isomonodromic deformation equations. The purpose of the present note is to extend the result in [2] to the Pohlmeyer and Lund-Regge system (PLR) [3], [4]

$$
\begin{align*}
& u_{\xi \eta}-\frac{v_{\xi} v_{\eta} \sin (u / 2)}{2 \cos ^{3}(u / 2)}+\sin u=0, \tag{1.1}\\
& v_{\xi \eta}+\frac{u_{\xi} v_{\eta}+u_{\eta} v_{\xi}}{\sin u}=0
\end{align*}
$$

and the non-linear Schrödinger equation (NLS)

$$
\begin{equation*}
u_{\eta}-i u_{\xi \xi}-2 i\left|u^{2}\right| u=0 . \tag{1.2}
\end{equation*}
$$

The multi-soliton solutions of these equations are related to the monodromy preserving deformations of the following 2×2 first order systems, respectively :

$$
\begin{equation*}
P Y=0, \quad P=\frac{d}{d x}-\left(G+F x^{-1}+E x^{-2}+\sum_{j=1}^{N} \frac{H_{j}}{x-a_{j}}\right), \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
P Y=0, \quad P=\frac{d}{d x}-\left(G x+F+\sum_{j=1}^{N} \frac{H_{j}}{x-a_{j}}\right) . \tag{1.4}
\end{equation*}
$$

The reader is referred to the previous paper [2], in which the deformation theory for the above equations was developed.

Another purpose of the present note is to investigate the Hamiltonian structure of the deformation equations for the above systems (1.3) and (1.4), and to calculate explicitly the " τ-function" in the case of PLR and NLS (cf. [8], [9], [10]). It is known that these " τ-function" are deeply connected with the Fredholm determinant of Gelfand-Levitan-Marchenko equation linearlizing PLR and NLS (cf. [10]).
§ 2. Application to PLR and NLS. PLR (1.1) is equivalent to the compatibility condition of the system of differential equations (cf. [3], [4])

$$
\left(\frac{\partial}{\partial \xi}-i\left[\begin{array}{ll}
& -a^{*} \tag{2.1}\\
-a &
\end{array}\right]-i x / 2\left[\begin{array}{cc}
1 & \\
& -1
\end{array}\right]\right) Y=0
$$

$$
\left(\frac{\partial}{\partial \eta}-i x^{-1} / 2\left[\begin{array}{ll}
\cos u & \exp (-i \omega) \sin u \\
\exp (i \omega) \sin u & -\cos u
\end{array}\right]\right) Y=0
$$

where $x \in C,(\xi, \eta) \in R^{2}, a=i \exp (i \omega) \sin u / 2 \cos u$,

$$
\omega_{\xi}=v_{\xi} \cos u / 2 \cos ^{2}(u / 2), \quad \omega_{\eta}=v_{\eta} / 2 \cos ^{2}(u / 2)
$$

and $*$ denotes the complex conjugate. Also NLS (1.2) is the compatibility condition of

$$
\begin{align*}
& \left(\frac{\partial}{\partial \xi}-i x\left[\begin{array}{ll}
-1 & \\
& 1
\end{array}\right]-\left[\begin{array}{rl}
u^{*} & -u
\end{array}\right]\right) Y=0 \tag{2.2}\\
& \left(\frac{\partial}{\partial \eta}-x^{2}\left[\begin{array}{ll}
-2 i & \\
& 2 i
\end{array}\right]-x\left[\begin{array}{ll}
& -2 u \\
2 u^{*}
\end{array}\right]-\left[\begin{array}{ll}
i|u|^{2} & -i u_{\xi} \\
-i u^{*} & -i|u|^{2}
\end{array}\right]\right) Y=0,
\end{align*}
$$

where $x \in C,(\xi, \eta) \in R^{2}$ (cf. [7]).
Let us review Date's direct construction method of N-soliton solutions of PLR and NLS (cf. [5], [6]). First we construct a matrix solution of (2.1)-(2.2) satisfying the following conditions:

$$
Y(x, \xi, \eta)=\hat{Y}(x, \xi, \eta) x^{N}\left[\begin{array}{ll}
e^{\theta} & \tag{2.3}\\
& e^{-\theta}
\end{array}\right]
$$

where

$$
\hat{Y}(x, \xi, \eta)=I+\sum_{j=1}^{N} Y_{j}(\xi, \eta) x^{-j}, \quad Y_{j}=\left[\begin{array}{ll}
y_{1, N-j} & y_{2, N-j}^{*} \\
-y_{2, N-j} & y_{1, N-j}^{*}
\end{array}\right]
$$

and $\theta=i / 2\left(\xi x+\eta x^{-1}\right)$ in the case of (2.1), while $\theta=-i\left(2 \eta x^{2}+\xi x\right)$ in the case of (2.2). Furthermore $Y(x, \xi, \eta)$ is assumed to satisfy the degenerating conditions

$$
Y\left(\alpha_{j}, \xi, \eta\right)\left[\begin{array}{c}
1 \tag{2.4}\\
-c_{j}
\end{array}\right]=0, \quad Y\left(\alpha_{j}^{*}, \xi, \eta\right)\left[\begin{array}{c}
c_{j}^{*} \\
1
\end{array}\right]=0, \quad(j=1, \cdots, N),
$$

where $\alpha_{j}(j=1, \cdots, N)$ are complex constants such that $\alpha_{j} \neq \alpha_{k}$ for $j \neq k$, $\alpha_{j} \neq \alpha_{k}^{*}$ for any j, k, and $c_{j}(j=1, \cdots, N)$ are non-zero complex constants. This condition is common to both cases. We define a $2 N \times 2 N$ matrix W by
(2.5)

$$
W=\left(a_{0}, \cdots, a_{N-1}, a_{0}^{\prime}, \cdots, a_{N-1}^{\prime}\right)
$$

where

$$
\begin{aligned}
& a_{l}={ }^{t}\left(\alpha_{1}^{l} e\left(\alpha_{1}\right), \cdots, \alpha_{N}^{l} e\left(\alpha_{N}\right), c_{1}^{*} \alpha_{1}^{* l} e\left(\alpha_{1}^{*}\right), \cdots, c_{N}^{*} \alpha_{N}^{* l} e\left(\alpha_{N}^{*}\right)\right), \\
& a_{l}^{\prime}={ }^{t}\left(-c_{1} \alpha_{1}^{l} e\left(\alpha_{1}\right)^{-1}, \cdots,-c_{N} \alpha_{N}^{l} e\left(\alpha_{N}\right)^{-1}, \alpha_{1}^{* l} e\left(\alpha_{1}^{*}\right)^{-1}, \cdots, \alpha_{N}^{* l} e\left(\alpha_{N}^{*}\right)^{-1}\right),
\end{aligned}
$$

and $e(\alpha)=\exp \left(i / 2\left(\xi \alpha+\eta \alpha^{-1}\right)\right)$ in the case of (2.1), while $e(\alpha)$ $=\exp \left(-2 i \eta \alpha^{2}-i \xi \alpha\right)$ in the case of (2.2), for $\alpha=\alpha_{j}$ or $\alpha_{j}^{*}(j=1, \cdots, N)$. If det W does not identically vanish, $Y(x, \xi, \eta)$ is uniquely determined by the above conditions.

Proposition (Date [6]). Case (2.1). $Y(x, \xi, \eta)$ solves the equation

$$
\begin{equation*}
d Y=\Omega Y \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega= & \left(i x / 2\left[\begin{array}{cc}
1 & \\
& -1
\end{array}\right]+i\left[\begin{array}{ll}
& -y_{2, N-1}^{*}
\end{array}\right]\right) d \xi \\
-y_{2, N-1} & \\
& +i x^{-1} / 2\left(\left|y_{1,0}\right|^{2}+\left|y_{2,0}\right|^{2}\right)^{-1}\left[\begin{array}{ll}
\left|y_{1,0}\right|^{2}-\left|y_{2,0}\right|^{2} & -2 y_{1,0} y_{2,0}^{*} \\
-2 y_{1,0}^{*} y_{2,0} & \left|y_{2,0}\right|^{2}-\left|y_{1,0}\right|^{2}
\end{array}\right] d \eta .
\end{aligned}
$$

Hence $Y(x, \xi, \eta)$ is a solution of (2.1) by the identification

$$
\begin{aligned}
& a=y_{2, N-1}, \quad \cos u=\left(\left|y_{1,0}-\left|y_{2,0}\right|^{2}\right)\left(\left|y_{1,0}\right|^{2}+\left|y_{2,0}\right|^{2}\right)^{-1},\right. \\
& \exp (i \omega) \sin u=-2 y_{1,0}^{*}, y_{2,0}\left(\left.y_{1,0}\right|^{2}+\left|y_{2,0}\right|^{2}\right)^{-1} .
\end{aligned}
$$

The pair of functions

$$
\begin{aligned}
& u=\arccos \left\{\left(\left|y_{1,0}\right|^{2}-\mid y_{2,0}{ }^{1}\right)\left(\left|y_{1,0}\right|^{2}+\left|y_{2,0}\right|^{2}\right)^{-1}\right\}, \\
& v=-i \log \left(y_{2,0} y_{2,0}^{*-1}\right)+v_{0}\left(v_{0} \in \boldsymbol{R}\right)
\end{aligned}
$$

is an N-soliton solution of PLR (1.1). Case (2.2). $\quad Y(x, \xi, \eta)$ satisfies the equation

$$
\begin{equation*}
d Y=\Omega Y, \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega= & \left(\mathrm{ix}\left[\begin{array}{ll}
-1 & \\
& 1
\end{array}\right]+\left[\begin{array}{ll}
2 i y_{2, N-1} & 2 i y_{2, N-1}^{*}
\end{array}\right]\right) d \xi \\
& +\left(x^{2}\left[\begin{array}{ll}
-2 i & \\
& 2 i
\end{array}\right]+x\left[\begin{array}{cc}
4 i y_{2, N-1} & 4 i y_{2, N-1}^{*}
\end{array}\right]\right. \\
& +\left[\begin{array}{ll}
4 i\left|y_{2, N-1}\right|^{2} & 4 i y_{2, N-1}^{*}-4 i y_{1, N-1}^{*} y_{2, N-1}^{*} \\
4 i y_{2, N-1}^{*}-4 i y_{1, N-1} y_{2, N-1} & 4 i\left|y_{2, N-1}\right|^{2}
\end{array}\right) d \eta .
\end{aligned}
$$

Therefore $Y(x, \xi, \eta)$ is a solution of (2.2) by the identification

$$
u=-2 i y_{2, N-1}^{*}, \quad u_{\xi}=-4 y_{2, N-1}^{*}+4 y_{1, N-1}^{*} y_{2, N-1} .
$$

Then $u=-2 i y_{2, N-1}^{*}$ is an N-soliton solution of NLS (1.2).
Next we search for the x-equations satisfied by $Y(x, \xi, \eta)$. After a little computation, $Y(x, \xi, \eta)$ is shown to solve the following equation:

Case (2.1).

$$
\begin{equation*}
\frac{\partial Y}{\partial x}=\left\{x^{-2} E+x^{-1} F+G+\sum_{j=1}^{N}\left(\frac{H_{\alpha_{j}}}{x-\alpha_{j}}+\frac{H_{\alpha_{j}^{*}}}{x-\alpha_{j}^{*}}\right)\right\} Y \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& G=i \xi / 2\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad E=K \tilde{E} K^{-1}, \\
& \tilde{E}=-i \eta / 2\left[\begin{array}{ll}
1 & -1
\end{array}\right], \quad K=\left[\begin{array}{cc}
y_{1,0} & y_{2,0}^{*} \\
-y_{2,0}^{*} & y_{1,0}^{*}
\end{array}\right] \\
& F+\sum_{j=1}^{N}\left(H_{\alpha_{j}}+H_{a_{j}^{*}}\right)=\left[\begin{array}{cc}
N & -i \xi y_{2, N-1} \\
-i \xi y_{2, N-1} & N
\end{array}\right],
\end{aligned}
$$

Case (2.2).

$$
\begin{equation*}
\frac{\partial Y}{\partial x}=\left\{G x+F+\sum_{j=1}^{N}\left(\frac{H_{\alpha j}}{x-\alpha_{j}}+\frac{H_{\alpha j}}{x+\alpha_{j}^{*}}\right)\right\} Y \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& G=\left[\begin{array}{ll}
-4 i \eta & \\
& 4 i \eta
\end{array}\right], \\
& F=\left[\begin{array}{ll}
-i \xi & 8 i \eta y_{2, N-1}^{*} \\
8 i \eta y_{2, N-1} & i \xi
\end{array}\right] \\
& \sum_{j=1}^{N}\left(H_{\alpha_{j}}+H_{\alpha_{j}^{*}}\right)=\left(h_{\mu \nu}\right) \\
& h_{11}=N+8 i \eta\left|y_{2, N-1}\right|^{2}, \quad h_{22}=h_{11}^{*}
\end{aligned}
$$

$$
h_{21}=8 i \eta y_{2, N-2}-8 i \eta y_{1, N-1} y_{2, N-1}+2 i \xi y_{2, N-1}, \quad h_{22}=-h_{21}^{*} .
$$

We note that the eigenvalues of $H_{\alpha}\left(\alpha=\alpha_{j}, \alpha_{j}^{*}, j=1, \cdots, N\right)$ are 0 and 1 in both cases. Next we determine the global connection structure for the solution of (2.9). The Stokes multipliers and the formal monodromy of (2.9) around the infinity are all trivial. We introduce invertible matrices $T_{\alpha}, Q_{\alpha}\left(\alpha=\alpha_{j}, \alpha_{j}^{*}, j=1, \cdots, N\right)$ as follows:

$$
\begin{align*}
& H_{\alpha}=T_{\alpha} \operatorname{diag}(0,1) T_{\alpha}^{-1} \tag{2.10}\\
& Y(x, \xi, \eta)=T_{\alpha} Y_{\alpha}(x, \xi, \eta) Q_{\alpha} .
\end{align*}
$$

Here Y_{α} is the normalized solution of (2.9) at $x=\alpha$ expressed as

$$
Y_{\alpha}=(x-\alpha)^{J} \Phi_{\alpha}(x)(x-\alpha)^{\left[\begin{array}{ll}
0 & 0
\end{array}\right]} \text {, }
$$

where $J=\operatorname{diag}(0,1)$, and $\Phi_{\alpha}(x)$ is holomorphic near $x=\alpha$, and $\Phi_{\alpha}(\alpha)=I$. In the present case, $l_{\alpha}=0$, because logalithmic terms are absent in $Y(x, \xi, \eta)$. By choosing an appropriate T_{α}, it is shown that

$$
Q_{\alpha}=\left[\begin{array}{ll}
1 & c \\
& 1
\end{array}\right],
$$

where $c=c_{j}$ for $\alpha=\alpha_{j}$, and $c=-c_{j}^{*-1}$ for $\alpha=\alpha_{j}^{*}$. As we have seen above, the deformation properties in the sense of [2] hold. In a parallel argument as above, we know that the equation (2.8) is deformed with keeping the deformation properties. Hence $Y(x, \xi, \eta)$ should satisfy the equation $d Y=\tilde{\Omega} Y$. The rational 1-form $\tilde{\Omega}$ is determined by the formula in Theorems 1 and 2 of [2], and coincides with Ω in (2.6)-(2.7), respectively.

Summing up, we have our main result.
Theorem 1. F, K, and $H_{\alpha}\left(\alpha=\alpha_{j}, \alpha_{j}^{*}, j=1, \cdots, N\right)$ satisfy the deformation equations in the sense of [2] (refer to (3.1)-(3.2) in §3, where H_{j} are replaced by H_{α}). These equations characterize the N soliton solutions of PLR and NLS, respectively.
§3. Hamiltonian structure and τ-function. In this paragraph, we will describe the Hamiltonian structure of the following two types of completely integrable system

$$
\begin{align*}
& d K=K\left\{d \tilde{E}, K^{-1} F K\right\}_{\tilde{E}}+\left\{d G, F+\sum_{j=1}^{N} H_{j}\right\}_{G} K \tag{3.1}\\
& d F=[\Phi, E]+[\Theta, G]+[\Psi, F]-\sum_{j=1}^{N} a_{j}^{-1}\left[\Theta, H_{j}\right] \\
& d H_{j}=\left[a_{j} \Phi+\Psi+a_{j}^{-1} \Theta, H_{j}\right], \quad j=1, \cdots, N, \\
& d F=\Psi+[\Theta, F]+\sum_{j=1}^{N} a_{j}\left[\Phi, H_{j}\right]+\sum_{j=1}^{N}\left[\Psi, H_{j}\right] \tag{3.2}\\
& d H_{j}=\left[a_{j}^{2} \Phi+a_{j} \Psi+\Theta, H_{j}\right], \quad j=1, \cdots, N .
\end{align*}
$$

Here $F=\left(F_{\mu \nu}\right), H_{j}=\left(H_{j, \mu \nu}\right)(j=1, \cdots, N), K=\left(K_{\mu \nu}\right)$, and $E=K \tilde{E} K^{-1}$ are 2×2 matrices, $G=\operatorname{diag}\left(g_{1}, g_{2}\right), \tilde{E}=\operatorname{diag}\left(e_{1}, e_{2}\right)$ with $g_{1} \neq g_{2}$, and $e_{1} \neq e_{2}$, and $a_{j}(j=1, \cdots, N)$ are mutually distinct constants. In case (3.1), d denotes the exterior differentiation with respect to g_{μ} and $e_{\mu}(\mu=1,2)$, and Φ, Ψ, and Θ are given by

$$
\begin{equation*}
\Phi=d G \quad \Psi=\left\{d G, F+\sum_{j=1}^{N} H_{j}\right\}_{G}, \quad \Theta=-K d \tilde{E} K^{-1} \tag{3.3}
\end{equation*}
$$

In case (3.2), d denotes the exterior differentiation with respect to $g_{1}, g_{2}, f_{1}=F_{11}$ and $f_{2}=F_{22}$, and Φ, Ψ, Θ are defined by

$$
\begin{align*}
\Phi= & \frac{1}{2} d G, \quad \Psi=d F^{(+)}+\{\Phi, F\}_{G}, \quad F^{(+)}=\operatorname{diag}\left(f_{1}, f_{2}\right), \tag{3.4}\\
\Theta= & \left\{\Phi, \sum_{j=1}^{N} H_{j}\right\}_{G} \\
& +\{\Psi, F\}_{G}+\frac{1}{2} \operatorname{diag}\left(F_{12} F_{21} d\left(\frac{1}{g_{1}-g_{2}}\right), F_{21} F_{12} d\left(\frac{1}{g_{2}-g_{1}}\right)\right) .
\end{align*}
$$

The bracket notation $\{$,$\} was introduce in [1].$
Let $Y=\hat{Y} x^{D_{\infty}} \exp (x G)$, where

$$
\hat{Y}=I+\sum_{l=1}^{\infty} Y_{l} x^{-l}, \quad \text { and } \quad Z=\hat{Z} x^{D_{0}} \exp \left(-x^{-1} \tilde{E}\right)
$$

where

$$
\hat{Z}=I+\sum_{l=1}^{\infty} Z_{l} x^{l}
$$

be the normalized formal solution matrix of (1.3) at the infinity and the origin, respectively. Likewise let

$$
Y=\hat{Y} x^{D} \exp \left(1 / 2 x^{2} G+x F^{(+)}\right), \quad \text { where } \quad \hat{Y}=I+\sum_{l=1}^{\infty} Y_{l} x^{-l}
$$

be the normalized formal matrix solution of (1.4) at the infinity.
We give a description of the Hamiltonian structure for the systems (3.1), (3.2). That of (3.1) was suggested by T. Miwa.

Theorem 2. We define the 1-form ω
Case (3.1) $\quad \omega=\operatorname{trace} Z_{1} d \tilde{E}-\operatorname{trace} Y_{1} d G$,
Case (3.2) $\quad \omega=-\operatorname{trace}\left(Y_{1} d F^{(+)}+Y_{2} d G-\frac{1}{2} Y_{1}^{2} d G\right)$.
Here Y_{1}, Z_{1} and Y_{1}, Y_{2} are the first or the second coefficients of the formal matrix solution of (1.3)-(1.4), respectively. We introduce the Poisson bracket \{, \} among the dependent variable F, K and H_{j} through

Case (3.1) $\left\{(F K)_{\mu \nu},\left(K^{-1}\right)_{\mu^{\prime} \nu}\right\}=\delta_{\mu \nu} \delta_{\nu \mu^{\prime}}$,
$\left\{H_{j, \mu \nu}, H_{k, \mu^{\prime} \nu}\right\}=\delta_{j k}\left(\delta_{\mu \nu}, H_{j, \mu_{\nu}^{\prime \nu}}-\delta_{\mu^{\prime} \nu} H_{k, \mu \nu}\right)$
all other combinations of $(F K)_{\mu \nu},\left(K^{-1}\right)_{\mu \nu}, H_{j, \mu \nu}$ are zero.
Case (3.2) $\quad\left\{F_{12}, F_{21}\right\}=1$,
$\left\{H_{j, \mu \nu}, H_{k, \mu^{\prime} \nu}\right\}=\delta_{j k}\left(\delta_{\mu \nu} H_{j, \mu^{\prime} \nu}-\delta_{\mu^{\prime} \nu} H_{k, \mu_{\nu}}\right)$,
all other combinations of $F_{\mu \nu}, H_{j, \mu \nu}$ are zero.
Here $F_{\mu \nu}=\left(g_{1}-g_{2}\right)^{1 / 2} \tilde{F}_{\mu \nu}(\mu \neq \nu)$. Then the systems (3.1)-(3.2) are written in a Hamiltonian system

Case (3.1) $d K=\{K, \omega\}, \quad d F=\{F, \omega\}$

$$
d H_{j}=\left\{H_{j}, \omega\right\} \quad(j=1, \cdots, N),
$$

Case (3.2) $d \tilde{F}=\{\tilde{F}, \omega\}$, $\tilde{F}=\left[\begin{array}{ll}\tilde{F}_{21} & \tilde{F}_{12}\end{array}\right]$

$$
d H_{j}=\left\{H_{j}, \omega\right\} \quad(j=1, \cdots, N)
$$

with the Hamiltonian 1-form ω given above.
For any solution of (3.1)-(3.2), ω is shown to be closed. If we write $\omega=\sum_{j=1}^{N} h_{j} d t_{j}$, where $t_{1}=g_{1}, t_{2}=g_{2}, t_{3}=e_{1}, t_{4}=e_{2}$, in Case (3.1) (resp. $t_{3}=f_{1}, t_{4}=f_{2}$ in Case (3.2)), we know that $\frac{\partial h_{j}}{\partial t_{i}}=\frac{\partial h_{i}}{\partial t_{j}}$ for any i, j. Since the 1 -form ω is closed for each solution of (3.1)-(3.2), there exists a function τ, unique up to a constant multiple, satisfying $\omega=d \log \tau$. In our case, the solution F, K, and H_{α} in (2.8)-(2.9) are expressible in the terms of $y_{n, l} y_{n, l}^{*}$ and hence by $\alpha_{j}, \alpha_{j}^{*}$, and $c_{j}, c_{j}^{*}(i=1, \cdots, N)$, so that an explicit form of " τ-function" is derived. After a little computation, we obtain

$$
\begin{array}{ll}
\text { (PLR) } & \tau(\xi, \eta)=\mathrm{const} e^{\varepsilon \eta / 2} \operatorname{det} W, \tag{3.5}\\
\text { (NLS) } & \tau(\xi, \eta)=\mathrm{const} \operatorname{det} W .
\end{array}
$$

Here W is given by (2.5). If we define an $N \times N$ matrix $C=\left(C_{\mu \nu}\right)$

$$
\begin{equation*}
C_{\mu \nu}=\frac{c_{\mu}}{\alpha_{\mu}-\alpha_{\nu}^{*}} \frac{g\left(\alpha_{\mu}\right)}{\dot{g}\left(\alpha_{\nu}^{*}\right)} e\left(\alpha_{\mu}\right)^{-1} e\left(\alpha_{\nu}^{*}\right), \tag{3.6}
\end{equation*}
$$

where

$$
g(x)=\prod_{\mu=1}^{N}\left(x-\alpha_{\mu}^{*}\right), \quad \dot{g}=\frac{d g}{d x}, \quad \text { and } e(\alpha)
$$

is given in (2.5), we obtain the final expression for $\tau(\xi, \eta)$

$$
\begin{array}{ll}
\text { (PLR) } & \tau(\xi, \eta)=\mathrm{const} e^{\xi \eta / 2} \prod_{j=1}^{N} e\left(\alpha_{j}\right) e\left(\alpha_{j}^{*}\right)^{-1} \operatorname{det}\left(I+C^{*} C\right) \tag{3.7}\\
\text { (NLS) } \quad \tau(\xi, \eta)=\mathrm{const} \prod_{j=1}^{N} e\left(\alpha_{j}\right) e\left(\alpha_{j}^{*}\right)^{-1} \operatorname{det}\left(I+C^{*} C\right) .
\end{array}
$$

Here C^{*} is the complex conjugate of C. Lastly we remark that, if C is pure imaginary i.e. $C^{*}=-C$ in (PLR) case, the " τ-function" reduces to that of sine-Gordon equation.

References

[1] K. Ueno: RIMS preprint, no. 301 (1979).
[2] ——: Ibid., no. 302 (1979).
[3] F. Lund and T. Regge: Phys. Rev. D, 14, 1524-1535 (1976).
[4] K. Pohlmeyer: Comm. Math. Phys., 46, 207-221 (1976).
[5] E. Date: Proc. Japan Acad., 55A, 27-30 (1979).
[6] --: On a construction of multi-soliton solutions of Pohlmeyer-Lund-Regge system and the classical massive Thirring model (to appear).
[7] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur: Stud. Appl. Math., 53, 249-315 (1974).
[8] K. Okamoto: Les Hamiltoniens polynomiaux associes aux Equations de Painleve (to appear).
[9] M. Jimbo, T. Miwa, Y. Mōri, and M. Sato: Density matrix of impenetrable bose gas and the fifth Painlevé transcendent. RIMS preprint, no. 303 (1979).
[10] T. Miwa, M. Jimbo, and K. Ueno: Monodromy preserving deformation of linear differential equations with rational coefficients (to appear).

