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Monodromy Preserving Deformation and Its
Application to Soliton Theory. II

By Kimio UENO
Research Institute for Mathematical Science, Kyoto University

(Communicated by K.Ssaku YOSIDA, M. J. A., May 12, 1980)

1. Introduction. This is a sequel of the preceding papers [1],
[2]. In the previous article [2], the author showed that the multi-
soliton solutions of the sine-Gordon equation are governed by the iso-
monodromic deformation equations. The purpose of the present
note is to extend the result in [2] to the Pohlmeyer and Lund-Regge
system (PLR) [3], [4]

(1.1) u,-- vv, sin (u/2) /sin u=O,
2 cos (u/2)

sin u
and the non-linear SchrSdinger equation (NLS)
(1.2) u,-iu-2i u] u=0.

The multi-soliton solutions of these equations are related to the
monodromy preserving deformations of the following 2 2 first order
systems, respectively"

(1.3) PY=O, p_ d G+Fx-+Ex-+

az+ + Ndx j=l X--aj

The reader is referred to the previous paper [2], in which the defor-
mation theory or the above equations was developed.

Another purpose o the present note is to investigate the
Hamiltonian structure o the deformation equations for the above
systems. (1.3) and (1.4), and to calculate explicitly the "r-function" in
the case of PLR and NLS (cf. [8], [9], [10]). It is known that these
"r-function" are deeply connected with the Fredholm determinant of
Gelfand-Levitan-Marchenko equation linearlizing PLR and NLS (cf.
[10]).

2. Application to PLR and NLS. PLR (1.1) is equivalent to
the compatibility condition of the system of differential equations (cf.
[3], [4])
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(_ix-/2 [cs u exp (--iw) sin u])y=o,[exp (iw) sin u --cos u
where x e C, (, ) e R, a--i exp (iw) sin u/2 cos u,

w=v cos u/2 cos (u/2), o,=v,/2 cos (u/2),
and denotes the complex conjugate. Also NLS (1.2) is the compati-
bility condition of

[_1

where e C, (, ) e R (el. [7]).
Le us review Date’s diree construction method of N-soliton solu-

tions of PLN and NLS (el. [g], [6]). Nirs we eonsrue a matrix solu-
tion of (2.1)-(2.2) satisfying the following eonditions

-o
where

Y(x, , 7) I+ Yj(, )x-j, y Yl,v-j Y-

and O=i/2(x+x-9 in the case of (2.1), while O=-i(2x+x) in the
case of (2.2). Furthermore Y(x, , ) is assumed to satisfy the degen-
erating conditions

[11_-o,(2.4) Y(a, , ])
--c 1

where a (]= 1, ., N) are complex constants such that a=/=a for ]=/=k,
a=/=a* for any ], k, and c (2" 1, ., N) are non-zero complex constants.
This condition is common to both cases. We define a 2N2N matrix
Wby

aN_ 1)(2.5) W= (a0, a_ 1, a0,

where
*e(*), * * *a (le(), e(), c c e()),

b t(-- coe(o) -1, CvOe(ON) , oe(o) -1, oe(o) -1),
and e(oO=exp(i/2(a+o-)) in the case o (2.1), while
=exp (-2i-iq) in the case of (2.2), for a=a or (]=1, ...,N).
If det W does not identically vanish, Y(x, , ) is uniquely determined
by the above conditions.

Proposition (Date [6]). Case (2.1). Y(x, , 7) solves the equation

(2.6) dY--gY,
where

/ ix- / 2(I y,,0 / y,01)
[-- 2y0Y.,0 [Y2,0 --lY,,01

d.
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Hence Y(x, , ) is a solution of (2.1) by the identification
a-- Y2,_, COS U--(ly,o[2--]y,o]2)(ly,ol2--]Y2,012) -,
exp (iw) sin u= 2yoY,o(I Y,o [+ Y.,o ) -.

The pair of functions
u--arccos ((ly,ol--Iy.,ol)(ly,ol
v----i log (y.,oy*,)+ Vo(Vo R)

is an N-soliton solution of PLR (1.1). Case (2.2). Y(x, , ) satisfies
the equation

dY-gY,(2.7)
where

+
[4iy.,_--4iy,_y,_ 4i

Therefore Y(x, , ) is a solution of (2.2) by the identification
u= -2iy_, u= -4y_+4y_y,_.

Then u=--2iy_, is an N-soliton solution of NLS (1.2).
Next we search for the x-equations satisfied by Y(x, , ). After

a little computation, Y(x, , ) is shown to solve the following equation:
Case (2.1).

3Y_(2.8) x-- x-E+x-F+G+:, x-a + x-a /Y
where

(2.9)

where

E=KEK-,

Case (2.2).

4i

F=[--i 8iy_]8iy,_, (H+H,) (h
j=l

h N+Si Y,- ] h,.=h
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h=8iy._-8iy._y,_+2iy._, h-- h.
We note that the eigenvalues of H (a=a, a’, ]= 1, ..., N) are 0 and 1
in both cases. Next we determine the global connection structure for
the solution of (2.9). The Stokes multipliers and the formal mono-
dromy of (2.9) around the infinity are all trivial. We introduce
invertible matrices T., Q. (a=a, a, ]= 1, ., N) as follows"
(2.10) H.= T. diag (0, 1)T:

Y(x, , )= T.Y.(x, , )Q..
Here Y is the normalized solution of (2.9) at x=a expressed as

0]Y=(x-a)(x)(x-a)["
where J=diag (0, 1), and O(x) is holomorphic near x=a, and (a)=I.
In the present case, /=0, because lcgalithmic terms are absent in
Y(x, , ). By choosing an appropriate T, it is shown that

where c=c or =, and c=-c- for =]. As we have seen
above, the deformation properties in the sense of [2] hold. In a par-
allel argument as above, we know that the equation (2.8) is deformed
with keeping the deformation properties. Hence Y(x, , ) should
satisfy the equation dY=Y. The rational 1-form is determined
by the formula in Theorems 1 and 2 of [2], and coincides with 9 in
(2.6)-(2.7), respectively.

Summing up, we have our main result.
Theorem 1. F, K, and H (a=a,, ]= 1, ..., N) satisfy the de-

formation equations in the .sense of [2] (refer to (3.1)-(3.2) in 3,
where H are replaced by H). These equations characterize the N-
soliton solutions of PLR and NLS, respectively.. Hamiltonian structure and v.function. In this paragraph,
we will describe the Hamiltonian structure of the following two types
of completely integrable system

(.1 ag=g{a, g-g}+ a, F+ og
=1

gP [, ]+ [o, 1+ [, 1 2[o,]
=1

gH=[a++e2O,H], =1, ...,N,

(.) gP= + [0, ]+ [, H]+ [, H]
=

dH=[aO+a+,H], ]=1, ...,N.
Here F=(F,), H=(H.,) (]=1,...,N), K=(K,), and E=KEK- are

22 matrices, G=diag (g, g), =diag (e, e) with gg, and ee,
and a (]=1,..., N) are mutually distinct constants. In case (3.1), d

denotes the exterior differentiation with respect to g, and e, (p= 1, 2),
and , , and are given by
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(3.3) =dG gr= dG, F+ , H O= -KdEK-1.

In case (3.2), d denotes the exterior differentiation with respect to
gl, g2, fl FI and f=F, and , , are defined by

(3.4) dG, dr(+) + {, r}e, F(+)= diag (f, f),
2

0= H
j=l G

))+{, r}+y g-g
The bracket notation {, } was introduce in [1].

Let Y=9’ exp (xG), where

9=I+ Yx-, and Z=2xexp(-x-E),
l=l

where

2=1+ Zx,
be the normalized formal solution matrix of (1.3) at the infinity and
the origin, respectively. Likewise let

Y= gxE exp (1/2xG+xF(+)), where =I+ Yx-,
l=l

be the normalized formal matrix solution of (1.4) at the infinity.
We give a description of the Hamiltonian structure for the systems

(3.1), (3.2). That of (3.1) was suggested by T. Miwa.
Theorem 2. We define the 1-form w

Case (3.1) =traceZdE-trace YdG,

Case (3.2) =-trace (YdF(+)+YdG-YdG).
Here Y, Z and Y, Y are the first or the second coecients of the

formal matrix solution of (1.3)-(1.4), respectively. We introduce the
Poisson bracket {, } among the dependent variable F, K andH through

Case (3.1) {(FK), (K-),,}=3,,,
{H.. H.,.} (.H.,,-.H..)
all other combinations of (FK), (K-), H,p are zero.

Case (3.2) {F, F} 1,
{Hy,, H,,,}=6(6,H,,-,H,,),
all other combinations of F, H,z are zero.

Here F=(g-g)/F (,). Then the systems (3.1)-(3.2) are written
in a Hamiltonian system

Case (3.1) dK= {K,
dH

Case (3.2) dF= {F, o},

dF-- (F, w}
(]-- 1, ..., N),

(]- 1, ..., N),
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with the Hamiltonian 1-form o given above.
For any solution of (3.1)-(3.2), w is shown to be closed. If we

write w= hdt, where t-g, L=g., t=e, t=e, in Case (3.1) (resp.

t-f, t=f in Case (3.2)), we know that 3h 3h for any i, ]. Since
t

the 1-form w is closed for each solution of (3.1)-(3.2), there exists a
function , unique up to a constant multiple, satisfying o= d log r. In
our case, the solution F, K, and H. in (2.8)-(2.9) are expressible in the
terms of Yn,Yn*, and hence by a,a’, and c, c (i=1,...,N), so that
an explicit form of "r-function" is derived. After a little computa-
tion, we obtain
(3.5) (PLR) r(, )--const e’/ det W,

(NLS) r(, ])-- const det W.
Here W is given by (2.5). If we define an N N matrix C--(C,)

(3.6) C c, g(") e(,)-’e(*),

where
dg and e(a)g(X)= =IH (X--0), - ---,

is given in (2.5), we obtain the final expression for r(, r)

(8.7) (PLR) r(, r/)=eonst e/’ 1-[ e(o)e(o])- det (I+C*C)
j=l

(NLS) r(’, 0=eonst 1--[ e(o)e(])- det (I+C*C).
j=l

Here C* is the complex conjugate of 6’. Lastly we remark that, if 6’
is pure imaginary i.e. 6’*=--6’ in (PLR) ease, the r-funetion" reduces
to thet of sine-Gordon equation.
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