36. Multi-Dimensional Generalizations of the Chebyshev Polynomials. I*)

By K. B. Dunn and R. Lidl
Mathematics Department, University of Tasmania, Australia
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1980)

1. Introduction. This paper continues the study of the classes of polynomials in 2 variables given in Dunn and Lidl [3] and generalizes these polynomials in two ways: They are generalized to polynomials in k variables over an arbitrary field K; secondly a parameter $b \in K$ is introduced for these polynomials, similar to the generalization of the classical Chebyshev polynomials in one variable as in Dickson [1] and Schur [14]. In analysis, the most important case, of course, is $K=C$ and $b=1$, which gives a natural generalization of the Chebyshev polynomials, see Koornwinder [8]. However, there are also some interesting algebraic and number theoretic properties in the more general case of a field K and $b \in K$, particularly for $K=G F(q)$ the one-dimensional polynomials have been studied extensively; see Lansch and Nöbauer [9], Fried [6] and Schur [14]. We use the same notation as in [3] and obtain generating functions and recurrence relations for generalized Chebyshev polynomials of the first and second kind in k variables. In the present paper we are not considering any of the analytic properties of the polynomials (for $k=1$ see Rivlin [13] or Szegö [15]), such as partial differential operators or orthogonality. A different approach to give multi-dimensional extensions of Chebyshev polynomials is introduced by Hays [7]. For some properties of special functions in k variables and a bibliography including the earlier papers on the subject we refer to [5]. We have organized the presentation of the material into I and II, each consisting of two sections: §2 Definitions, § 3 Results in I and § 4 Proofs, § 5 Outlook in II.
2. Definitions. Dickson [1] generalized the classical Chebyshev polynomials in the following way. Let K be a field, $r(z)=z^{2}-x z+b$ a polynomial over K with roots u and v in a suitable extension field L of K (e.g. if $K=C$ then $L=C$, if $K=G F(q)$ then $L=G F\left(q^{2}\right)$). Then generalizations of the Chebyshev polynomials in one variable of the first and second kind are given by (2.1) and (2.2), respectively.

$$
\begin{array}{lc}
\text { (2.1) } & P_{n}^{-1 / 2}(x ; b)=u^{n}+v^{n}, \tag{2.1}\\
\text { (2.2) } & P_{n}^{1 / 2}(x ; b)=(u-v)^{-1}\left(u^{n+1}-v^{n+1}\right), \\
\text { for } n \geq \mathbb{Z} \\
\end{array}
$$

[^0]$$
P_{n}^{1 / 2}(x ; b)=\left(u^{-1}-v^{-1}\right)^{-1}\left(u^{-(n+1)}-v^{-(n+1)}\right), \quad \text { for } n<0,
$$
where $x=u+v, u v=b \in K$. In the special case $K=L=C, b=1$, and $n \geq 0$, let $u=e^{i \theta}, v=e^{-i \theta}$. Then we have
$$
P_{n}^{-1 / 2}(2 \cos \Theta ; 1)=2 T_{n}(\cos \Theta)=2 \cos n \Theta
$$
and
$$
P_{n}^{1 / 2}(2 \cos \Theta ; 1)=U_{n}(\cos \Theta)=(\sin \Theta)^{-1} \sin (n+1) \Theta,
$$
where T_{n} and U_{n} denote the classical Chebyshev polynomials in one variable of the first and second kind, respectively. With $x=\cos \Theta$ this gives the simple relationship
\[

$$
\begin{equation*}
P_{n}^{-1 / 2}(2 x ; 1)=2 T_{n}(x) \quad \text { and } \quad P_{n}^{1 / 2}(2 x ; 1)=U_{n}(x) \tag{2.3}
\end{equation*}
$$

\]

More generally (see Lausch and Nöbauer [9], p. 209, Schur [14]) :

$$
\begin{align*}
P_{n}^{-1 / 2}(x ; b) & =2(\sqrt{b})^{n} T_{n}\left(\frac{x}{2 \sqrt{b}}\right) \tag{2.4}\\
P_{n}^{1 / 2}(x ; b) & =(\sqrt{b})^{n} U_{n}\left(\frac{x}{2 \sqrt{b}}\right) . \tag{2.5}
\end{align*}
$$

Therefore the polynomials defined in (2.1) and (2.2) can be regarded as generalized Chebyshev polynomials. Now we consider the k-dimensional case. Let $u_{i}, 1 \leq i \leq k+1$, be elements in a suitable extension field L of the field K, for example, in case $K=C$ we take $L=C$, in case $K=G F(q)$ we take $L=G F\left(q^{(k+1)!}\right)$ (compare with [10]). Let $u_{1} u_{2} \cdots u_{k+1}$ $=b \in K$. The i-th elementary symmetric function σ_{i} in u_{1}, \cdots, u_{k+1} is denoted by x_{i}, i.e.

$$
\left\{\begin{array}{l}
x_{1}=u_{1}+\cdots+u_{k+1}=\sigma_{1}\left(u_{1}, \cdots, u_{k+1}\right) \tag{2.6}\\
x_{2}=u_{1} u_{2}+u_{1} u_{3}+\cdots+u_{k} u_{k+1}=\sigma_{2}\left(u_{1}, \cdots, u_{k+1}\right) \\
\quad \cdots \\
x_{k}=u_{1} \cdots u_{k}+u_{1} \cdots u_{k-1} u_{k+1}+\cdots+u_{2} u_{3} \cdots u_{k+1}=\sigma_{k}\left(u_{1}, \cdots, u_{k+1}\right) \\
x_{k+1}=u_{1} u_{2} \cdots u_{k+1}=\sigma_{k+1}\left(u_{1}, \cdots, u_{k+1}\right)=b .
\end{array}\right.
$$

We introduce a generalization of the Chebyshev polynomials of the first kind, using \underline{x} to denote the k-dimensional vector (x_{1}, \cdots, x_{k}).

Definition 2.1. $P_{m, n}^{-1 / 2}(\underline{x} ; b)=\sum_{i=1}^{k+1} \sum_{\substack{j=1 \\ j \neq i}}^{k+1} u_{i}^{m} u_{j}^{-n}$ for integers m, n and a nonzero element b in K.

These polynomials are k-dimensional generalizations of the polynomials $P_{m, n}^{-1 / 2}(x, y ; 1)$ introduced by Koornwinder [8] in case $K=C$ and also investigated in [3]. The special polynomials $P_{m, 0}^{-1 / 2}(\underline{x} ; b)$, denoted by $k g_{m}(\underline{x})$, have been introduced by Lidl and Wells [10] as k times the m-th power sum of the roots of the polynomial

$$
r(z)=z^{k+1}-x_{1} z^{k}+x_{2} z^{k-1}+\cdots+(-1)^{k} x_{k} z+(-1)^{k+1} b
$$

over K. In case $K=C$ they were also introduced by Ricci [12]. using the notation from [8] or [3] for these polynomials, we have

$$
\begin{equation*}
P_{m, 0}^{-1 / 2}(\underline{x} ; b)=k \sum_{i=1}^{k+1} u_{i}^{m}=k g_{m}(\underline{x} ; b) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{0, n}^{-1 / 2}(\underline{x} ; b)=k \sum_{j=1}^{k+1} u_{j}^{-n}=k g_{-n}(\underline{x} ; b) . \tag{2.8}
\end{equation*}
$$

Thus we can derive from Definition 2.1.

$$
\begin{equation*}
P_{m, n}^{-1 / 2}(\underline{x} ; b)=\frac{1}{k^{2}} P_{m, 0}^{-1 / 2}(\underline{x} ; b) P_{0, n}^{-1 / 2}(\underline{x} ; b)-\frac{1}{k} P_{m-n, 0}^{-1 / 2}(\underline{x} ; b) . \tag{2.9}
\end{equation*}
$$

In order to define generalized Chebyshev polynomials of the second kind we introduce the matrix $\mathfrak{l}_{m, n}$ of elements u_{1}, \cdots, u_{k+1} in an extension L of K, where $u_{1} \cdots u_{k+1}=b \in K$.

$$
\mathfrak{U}_{m, n}=\left(\begin{array}{lll}
u_{1}^{m+k} & u_{2}^{m+k} \cdots u_{k+1}^{m+k} \tag{2.10}\\
u_{1}^{k-1} & u_{2}^{k-1} \cdots \cdots u_{k+1}^{k-1} \\
\cdots \cdots & \cdots & \cdots \cdots \\
u_{1} & u_{2} & \cdots \\
u_{k+1} \\
u_{1}^{-n} & u_{2}^{-n} & \cdots u_{k+1}^{-n}
\end{array}\right) \quad \text { for } m, n \geq 0
$$

Let $\mathfrak{H}_{m, n}^{(-1)}$ denote the matrix which is obtained from $\mathfrak{U}_{m, n}$ by replacing u_{i} by u_{i}^{-1} for $i=1,2, \cdots, k+1$. Then we define polynomials over the field K by

Definition 2.2. $\quad P_{m, n}^{1 / 2}(\underline{x} ; b)=\left(\operatorname{det} \mathfrak{H}_{m, n}\right)\left(\operatorname{det} \mathfrak{U}_{0,0}\right)^{-1}$

$$
P_{-m,-n}^{1 / 2}(\underline{x} ; b)=\left(\operatorname{det} \mathfrak{U}_{m, n}^{(-1)}\right)\left(\operatorname{det} \mathfrak{U}_{0,0}^{(-1)}\right)^{-1}
$$

where the matrix $\mathfrak{H}_{m, n}$ is given by (2.10) and $\underline{x}=\left(x_{1}, \cdots, x_{k}\right)$,

$$
x_{i}=\sigma_{i}\left(u_{1}, \cdots, u_{k+1}\right), 1 \leq i \leq k+1, \quad \text { and } \quad x_{k+1}=b \in K
$$

Finally we generalize the polynomials $D_{m, n}^{-1 / 2}(x, y)$ introduced in [3] to the k-dimensional case.

Definition 2.3. The polynomials $D_{m_{1}, \ldots, m_{k}}^{-1 / 2}(\underline{x})$ in k variables $\left(x_{1}, \cdots, x_{k}\right)=\underline{x}$ are given by the generating function

$$
\begin{aligned}
\sum_{m_{1}=0}^{\infty} & \cdots \sum_{m_{k}=0}^{\infty} D_{m_{1}, \ldots, m_{k}}^{-1 / 2}(\underline{x}) s_{1}^{m_{1}} \cdots s_{k}^{m_{k}} \\
& =\frac{1-\left(1-\sum_{i=1}^{k} x_{i}^{2}\right)\left(\sum_{i=1}^{k} s_{i}^{2}\right)-\sum_{i=1}^{k} s_{i}^{2} x_{i}^{2}}{\left(1-\sum_{i=1}^{k} s_{i} x_{i}\right)^{2}+\left(1-\sum_{i=1}^{k} x_{i}^{2}\right)\left(\sum_{i=1}^{k} s_{i}^{2}\right)}
\end{aligned}
$$

As orthogonal polynomials over \boldsymbol{R} on the hypershpere $\sum_{i=1}^{k} x_{i}^{2}=1$ with weight function $\left(1-\sum_{i=1}^{k} x_{i}^{2}\right)^{-1 / 2}$ these polynomials could be regarded as Chebyshev polynomials of the first kind in k variables. Polynomials of the second kind can be defined by replacing the numerator of the generating function in Definition 2.3 by 1. Thus

Definition 2.4.

$$
\sum_{m_{1}=0}^{\infty} \cdots \sum_{m_{k}=0}^{\infty} D_{m_{1}, \cdots, m_{k}}^{1 / 2}(x) s_{1}^{m_{1}} \cdots s_{k}^{m_{k}}=\frac{1}{\left(1-\sum s_{i} x_{i}\right)^{2}+\left(1-\sum x_{i}^{2}\right)\left(\sum s_{i}^{2}\right)}
$$

3. Results. We use the notation $x=\left(x_{1}, \cdots, x_{k}\right)$, introduced in
§2. In Lemma $3.1 \underline{x}^{\prime}=\left(x_{k}, x_{k-1}, \cdots, x_{1}\right)$.
Lemma 3.1. $\quad P_{-m, 0}^{-1 / 2}(\underline{x} ; b)=P_{0, m}^{-1 / 2}(\underline{x} ; b)=P_{m, 0}^{-1 / 2}\left(b^{-1} \underline{x}^{\prime} ; b^{-1}\right)$

$$
P_{-m, 0}^{1 / 2}(\underline{x} ; b)=P_{0, m}^{1 / 2}(\underline{x} ; b)=P_{m, 0}^{1 / 2}\left(b^{-1} \underline{x}^{\prime} ; b^{-1}\right) .
$$

The restriction $b \neq 0$ in Definitions 2.1 and 2.2 are not crucial, because of

Lemma 3.2. $\quad P_{m, 0}^{-1 / 2}(\underline{x} ; 0)=P_{m, 0}^{-1 / 2}\left(x_{1}, \cdots, x_{k-1} ; x_{k}\right)$

$$
P_{m, 0}^{1 / 2}(\underline{x} ; 0)=P_{m, 0}^{1 / 2}\left(x_{1}, \cdots, x_{k-1} ; x_{k}\right)
$$

From (2.9) and Lemma 3.1 we have,
Lemma 3.3. $P_{m, n}^{-1 / 2}(\underline{x} ; b)=\frac{1}{k^{2}} P_{m, 0}^{-1 / 2}(\underline{x} ; b) P_{-n, 0}^{-1 / 2}(\underline{x} ; b)-\frac{1}{k} P_{m-n, 0}^{-1 / 2}(\underline{x} ; b)$
Lemma 3.4.

$$
\begin{aligned}
& \frac{1}{k} \sum_{m=0}^{\infty} P_{m, 0}^{-1,2}(x ; b) s^{m}=\frac{N_{+}}{D_{+}} \\
& \frac{1}{k} \sum_{m=0}^{\infty} P_{-m, 0}^{-1,2}(x ; b) t^{m}=\frac{N_{-}}{D_{-}}
\end{aligned}
$$

where

$$
\begin{equation*}
N_{+}=\sum_{i=0}^{k}(k+1-i)(-1)^{i} x_{i} s^{i} \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
N_{-}=\sum_{i=0}^{k}(k+1-i)(-1)^{i} b^{-1} x_{k+1-i} t^{i} \tag{3.2}\\
D_{+}=\sum_{i=0}^{k+1}(-1)^{i} x_{i} s^{i} \tag{3.3}\\
D_{-}=\sum_{i=0}^{k+1}(-1)^{i} b^{-1} x_{k+1-i} t^{i} .
\end{gather*}
$$

Theorem 3.5 (Generating Function).

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{m, n}^{-1 / 2}(x ; b) s^{m} t^{n}=\frac{N_{+} N_{-}-M}{D_{+} D_{-}}
$$

where $(1-s t) M=D_{+} N_{-}+D_{-} N_{+}-(k+1) D_{+} D_{-}$.
Theorem 3.6 (Recurrence Relation).

$$
\begin{aligned}
& P_{m, n}^{-1 / 2}=\sum_{i=1}^{k+1}(-1)^{i-1} x_{i} P_{m-i, n}^{-1 / 2} \quad \text { for } m>k \\
& P_{m, n}^{-1 / 2}=b^{-1} \sum_{i=1}^{k+1}(-1)^{i-1} x_{k+1-i} P_{m, n-i}^{-1 / 2} \quad \text { for } n>k,
\end{aligned}
$$

where $x_{k+1}=b, x_{0}=1$ and the initial conditions are given by

$$
\begin{aligned}
& P_{m, 0}^{-1 / 2}=\sum_{i=1}^{m}(-1)^{i-1} x_{i} P_{m-i, 0}^{-1 / 2}+k(-1)^{m}(k+1-m) x_{m} \quad \text { for } 0 \leq m \leq k \\
& P_{-m, 0}^{-1 / 2}=\sum_{i=1}^{m}(-1)^{i-1} b^{-1} x_{k+1-i} P_{-m+i, 0}^{-1 / 2}+k(-1)^{m}(k+1-m) b^{-1} x_{k+1-m} \\
& \text { for } 0 \leq m \leq k .
\end{aligned}
$$

and

$$
P_{m, n}^{-1 / 2}=\frac{1}{k^{2}} P_{m, 0}^{-1 / 2} P_{-n, 0}^{-1 / 2}-\frac{1}{k} P_{m-n, 0}^{-1 / 2} .
$$

In the special cases $n=0$, and $b=1$ these results have been obtained in [11]. We list some of the polynomials $P_{m, n}^{-1 / 2}(\underline{x} ; b)$ of small degrees for $k=2$ and $k=3$.

	$k=2$	$k=3$
$P_{00}^{-1 / 2}$	6	12
$P_{01}^{-1 / 2}$	$2 b^{-1} y$	$3 b^{-1} z$
$P_{02}^{-1 / 2}$	$2 b^{-2}\left(y^{2}-2 b x\right)$	$3 b^{-2}\left(z^{2}-2 b y\right)$
$P_{10}^{-1 / 2}$	$2 x$	$3 x$
$P_{11}^{-1 / 2}$	$b^{-1}(x y-3 b)$	$b^{-1}(x z-4 b)$
$P_{12}^{-1 / 2}$	$b^{-2}\left(x y^{2}-2 b x^{2}-b y\right)$	$b^{-2}\left(x z^{2}-2 b x y-b z\right)$
$P_{20}^{-1 / 2}$	2($x^{2}-2 y$)	$3\left(x^{2}-2 y\right)$
$P_{21}^{-1 / 2}$	$b^{-1}\left(x^{2} y-2 y^{2}-b x\right)$	$b^{-1}\left(x^{2} z-2 y z-b x\right)$
$P_{22}^{-1 / 2}$	$b^{-2}\left(x^{2} y^{2}-2 y^{3}-2 b x^{3}+4 b x y-3 b^{2}\right)$	$b^{-2}\left(x^{2} z^{2}-b x^{2} y z-2 y z^{2}+4 b y^{2}-4 b^{2}\right)$

Generating functions and recurrence relations for the generalized Chebyshev polynomials $P_{m, n}^{1 / 2}$ of the second kind follow now. D_{+}and D_{-}are as in Lemma 3.4.

Lemma 3.7. $\quad \sum_{m=0}^{\infty} P_{m, 0}^{1 / 2}(\underline{x} ; b) t^{m}=\frac{1}{D_{+}}$and $\sum_{m=0}^{\infty} P_{-m, 0}^{1 / 2}(x ; b) t^{m}=\frac{1}{D_{-}}$.
Theorem 3.8 (Generating Function).

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} P_{m, n}^{1 / 2}(x ; b) s^{m} t^{n}=\frac{1-s t}{D_{+} D_{-}}
$$

Theorem 3.9 (Recurrence Relation).

$$
\begin{aligned}
& P_{m, n}^{1 / 2}=\sum_{i=1}^{\min (m, k+1)}(-1)^{i-1} x_{i} P_{m-i, n}^{1 / 2} \quad \text { for } m>1 \\
& P_{m, n}^{1 / 2}=\sum_{i=1}^{\min (n, k+1)}(-1)^{i-1} b^{-1} x_{k+1-i} P_{m, n-i}^{1 / 2} \quad \text { for } n>1
\end{aligned}
$$

where

$$
P_{0,0}^{1 / 2}=1, \quad P_{1,0}^{1 / 2}=x_{1}, \quad P_{0,1}^{1 / 2}=b^{-1} x_{k} \quad \text { and } \quad P_{1,1}^{1 / 2}=b^{-1} x_{1} x_{k}-1 .
$$

We can see that for $|m|>k$ the polynomials $P_{m, 0}^{1 / 2}$ satisfy the same recurrence relation as $P_{m, 0}^{-1 / 2}$.

Corollary 3.10. $\quad P_{m, 0}^{1 / 2}=\sum_{i=1}^{m}(-1)^{i-1} x_{i} P_{m-i, 0}^{1 / 2}$

$$
P_{-m, 0}^{1 / 2}=\sum_{i=1}^{m}(-1)^{i-1} b^{-1} x_{k+1-i} P_{-m+i, 0}^{1 / 2}
$$

$$
\text { for } 0 \leq m \leq k
$$

Lemma 3.11. $P_{m, n}^{1 / 2}=P_{m, 0}^{1 / 2} P_{-n, 0}^{1 / 2}-P_{m-1,0}^{1 / 2} P_{-(n-0), 0}^{1 / 2} \quad$ for $m, n \neq 0$.
Lemma 3.12. $\frac{1}{k} P_{i, 0}^{-1 / 2}(x ; b)=\sum_{i=0}^{\min (m, k)}(k+1-i)(-1)^{i} x_{i} P_{m-i}^{1 / 2}(\underline{x} ; b)$

$$
\text { for } m \geq 0
$$

We list some of the polynomials $P_{m, n}^{1 / 2}$ of small degrees for $k=2$ and $k=3$.

	$k=2$	$k=3$
$P_{0,0}^{1 / 2}$	1	1
$P_{0,1}^{1 / 2}$	$b^{-1} y$	$b^{-1} z$
$P_{0,2}^{1 / 2}$	$b^{-2}\left(y^{2}-b x\right)$	$b^{-2}\left(z^{2}-b y\right)$

	$k=\mathbf{2}$	$k=3$
$P_{1,0}^{1 / 2}$	x	x
$P_{1,1}^{1 / 2}$	$b^{-1}(x y-b)$	$b^{-1}(x z-b)$
$P_{1,2}^{1,2}$	$b^{-2}\left(x y^{2}-b x^{2}-b y\right)$	$b^{-2}\left(x z^{2}-b x y-b z\right)$
$P_{2,0}^{1 / 2}$	$x^{2}-y$	$x^{2}-y$
$P_{2,1}^{1,2}$	$b^{-1}\left(x^{2} y-y^{2}-b x\right)$	$b^{-1}\left(x^{2} z-y z-b x\right)$
$P_{2,2}^{1 / 2}$	$b^{-2}\left(x^{2} y^{2}-b x^{3}-y^{3}\right)$	$b^{2}\left(x^{2} z^{2}-b x^{2} y-y z^{2}+b y^{2}-b x z\right)$

Finally we have the following relationship between the polynomials introduced in Definitions (2.3), (2.4) and (2.1), (2.2).

Theorem 3.13. $\quad D_{0, \ldots, m_{i}, \ldots, 0}^{-1 / 2}(x)=\frac{1}{k} P_{m_{i}, 0}^{-1 / 2}\left(2 x_{i} ; 1-\sum_{\substack{j=1 \\ j \neq i}}^{k} x_{j}^{2}\right) \quad m_{i} \neq 0$,

$$
D_{0, \ldots, m_{i}, \ldots, 0}^{1 / 2}(x)=P_{m_{i}, 0}^{1 / 2}\left(2 x_{i} ; 1-\sum_{\substack{j=1 \\ j \neq i}}^{k_{j}^{j \neq i}} x_{j}^{2}\right) \quad m_{i} \neq 0
$$

[^0]: *) We acknowledge support of this project by the Australian Research Grants Committee; under Grant No. B 7815210 I, and by the University of Tasmania.

