4. On the Initial Boundary Value Problem of the Linearized Boltzmann Equation in an Exterior Domain

By Seiji Ukai*) and Kiyoshi Asano**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1980)

1. Problem and result. Let O be a bounded convex domain in $\boldsymbol{R}^{n}(n \geq 3)$ with a smooth boundary and $\Omega=\boldsymbol{R}^{n} \backslash \bar{O}$. Put $Q=\Omega \times \boldsymbol{R}^{n}$ and $S^{ \pm}=\left\{(x, \xi) \in \partial \Omega \times \boldsymbol{R}^{n} ; n(x) \cdot \xi \gtrless 0\right\}$, where $n(x)$ is the inner normal of $\partial \Omega$ at x. For $u=u(t, x, \xi)$ which is related to the density of gas particles at time $t \geq 0$ and a point $x \in \Omega$ with a velocity $\xi \in \boldsymbol{R}^{n}$, our equation is described as follows;
(1.1) $\frac{\partial u}{\partial t}=-\sum_{j=1}^{n} \xi_{j} \frac{\partial u}{\partial x_{j}}-\nu(\xi) u+\int_{R^{n}} K(\xi, \eta) u(t, x, \eta) d \eta$.
(1.2) $\left.u\right|_{s+}=C\left(\left.u\right|_{s-}\right)$.
(1.3) $\left.u\right|_{t=0}=u_{0}(x, \xi)$.

Here C is a linear operator from a function space on S^{-}to the similar one on S^{+}. Our assumptions on the collision operator $L=\nu(\xi)$ $-K$ are those of cut-off hard potentials.
(1.4) $\nu(\xi)$ is continuous in ξ, depends only on $|\xi|$ and $\nu(\xi) \geq \nu_{0}>0$ for some constant ν_{0}.
(1.5) $K(\xi, \eta)=K(\eta, \xi)$ is real valued and continuous for $\xi \neq \eta$, $\int_{R^{n}}|K(\xi, \eta)|^{p} d \eta<\infty$ for some $p, 1<p<\infty, \quad \int_{R^{n}}|K(\xi, \eta)|(1+|\eta|)^{-\alpha} d \eta$ $\leq d_{\alpha}(1+|\xi|)^{-\alpha-1}$ for any $\alpha \geq 0$.

Moreover the operator L is non-negative self-adjoint in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and has an isolated eigenvalue 0 with eigenfunctions $\left\{1, \xi_{1}, \cdots, \xi_{n},|\xi|^{2}\right\}$ $\times \exp \left(-\frac{1}{2}|\xi|^{2}\right)$. (Note that the operator K induced from the integral kernel $K(\xi, \eta)$ is a compact self-adjoint operator in $L^{2}\left(\boldsymbol{R}^{n}\right)$.)

As for the operator C we assume
(1.6) $\|C\| \leq 1$
as an operator from $L^{2}\left(S^{-} ; \rho\right)$ to $L^{2}\left(S^{+} ; \rho\right)$, where $\rho=\rho(x, \xi)=|n(x) \cdot \xi|$ and $L^{2}\left(S^{ \pm} ; \rho\right)$ is the space of square integrable function on $S^{ \pm}$with respect to the measure $\rho(x, \xi) d S_{x} d \xi$.

We define the linearized Boltzmann operator B by

$$
\begin{equation*}
B=-\sum_{j=1}^{n} \xi_{j} \frac{\partial}{\partial x_{j}}-\nu(\xi)+K=-\xi \cdot \nabla_{x}-L \text { with domain } D(B) \tag{1.7}
\end{equation*}
$$

[^0]$=\left\{u \in L^{2}(Q) ;\left(\xi \cdot \nabla_{x}+\nu(\xi)\right) u(x, \xi) \in L^{2}(Q)\right.$ and $\left.\left.u\right|_{s+}=\left.C u\right|_{s^{-}}\right\}$. Then we have the following

Theorem. Let $n \geq 3$. Assume the conditions (1.4)-(1.6). Then, the linearized Boltzmann operator B generates a contraction semi-group $e^{t B}$. Moreover, if $u_{0} \in L^{2}(Q) \cap L^{2}\left(\boldsymbol{R}^{n} ; L^{1}(\Omega)\right)$, we have
(1.8) $\left\|e^{t B} u_{0}\right\|_{L^{2}(Q)} \leq c \quad a_{n}(t) \quad\left(\left\|u_{0}\right\|_{L^{2}(Q)}+\left\|u_{0}\right\|_{L^{2}\left(R^{n} ; L^{1}(\Omega)\right.}\right)$, where $a_{3}(t)$ $=(1+t)^{-3 / 4} \log (2+t), a_{4}(t)=(1+t)^{-1} \log (2+t)$ and $a_{n}(t)=(1+t)^{-1}$ for $n \geq 5$.

Remark. The exterior initial-boundary value problem of the linearized Boltzmann equation was first considered by Ukai [6] in case of reverse reflection. He obtained similar estimates for $n \geq 5$ with $a_{n}(t)=(1+t)^{-1 / 2}$. The estimate (1.8) enables us to study the global existence of the solution of the exterior initial-boundary value problem of the non-linear Boltzmann equation [1].
2. Results on the case $Q^{\infty}=R^{n} \times R^{n}$ without the boundary con. dition. Put $A^{\infty}=-\xi \cdot \nabla_{x}-\nu(\xi)$ and $B^{\infty}=A^{\infty}+K$, with $D\left(A^{\infty}\right)=D\left(B^{\infty}\right)$ $=\left\{u \in L^{2}\left(Q^{\infty}\right) ;\left(\xi \cdot \nabla_{x}+\nu(\xi)\right) u(x, \xi) \in L^{2}\left(Q^{\infty}\right)\right\}=D^{\infty} . \quad A^{\infty}$ generates a semigroup in $X=L^{2}\left(Q^{\infty}\right),\left(e^{t A^{\infty}} u\right)(x, \xi)=e^{-t \nu(\xi)} u(x-t \xi, \xi)$ and $\left\|e^{t A^{\infty}}\right\| \leq e^{-t \nu_{0}}$. B^{∞} also generates a contraction semi-group in X. Put $\hat{u}(k, \xi)$ $=\int e^{-i k \cdot x} u(x, \xi) d x, A^{\infty}(k)=i \xi \cdot k-\nu(\xi)$ and $B^{\infty}(k)=A^{\infty}(k)+K$. Then $\left(A^{\infty} u\right)^{\wedge}$ $(k, \xi)=A^{\infty}(k) \hat{u}(k, \xi)$ and $\left(B^{\infty} u\right)^{\wedge}(k, \xi)=B^{\infty}(k) \hat{u}(k, \xi) . \quad\left(\lambda-A^{\infty}(k)\right)^{-1} K$ is a compact operator in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and depends continuously on λ and k. If $\operatorname{Re} \lambda>-\nu_{0}$ and $\left\{1-\left(\lambda-A^{\infty}(k)\right)^{-1} K\right\}^{-1}$ exists (is uniformly bounded for $k \in \boldsymbol{R}^{n}$), then $\left(\lambda-B^{\infty}(k)\right)^{-1}=\left\{1-\left(\lambda-A^{\infty}(k)\right)^{-1} K\right\}^{-1}(\lambda-A(k))^{-1}$ exists $\left(\left(\lambda-B^{\infty}\right)^{-1}\right.$ exists).

Ukai [5] and Nishida-Imai [4] proved that $\left\|\left(\sigma+i \tau-A^{\infty}(k)\right)^{-1} K\right\| \rightarrow 0$ as $|\tau|+|k| \rightarrow \infty$ uniformly in $\sigma \geq-\nu_{1}, 0<\nu_{1}<\nu_{0}$.

Thus, putting $C\left(-\nu_{1}, \tau_{1}\right)=\{\sigma+i \tau ; \sigma \geq 0, \tau \in R\} \cup\left\{\sigma+i \tau ;-\nu_{1} \leq \sigma \leq 0\right.$, $\left.|\tau| \geq \tau_{1}\right\}$ for some $\nu_{1}<\nu_{0}$ and $\tau_{1}>0$, we have that $\left\|\left\{1-\left(\lambda-A^{\infty}(k)\right)^{-1} K\right\}^{-1}\right\|$ $\leq C_{0}^{\prime}$ for $(\lambda, k) \in C\left(-\nu_{1}, \tau_{1}\right) \times \boldsymbol{R}^{n} . \quad B^{\infty}(k)$ is maximal dissipative in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and has no eigenvalues on the imaginary axis for $k \neq 0$. This fact and following Lemma 2.1 imply that the resolvent set $\rho\left(B^{\infty}\right)$ of B^{∞} contains $C\left(-\beta_{\infty}, \tau_{\infty}\right) \cup\left\{\sigma+i \tau ;-a_{\infty} \tau^{2} \leq \sigma \leq 0,|\tau| \leq \tau_{\infty}\right\} \backslash\{0\} \equiv \sum\left(\beta_{\infty}, a_{\infty}\right) \backslash\{0\}$, for some $\nu_{0}>\beta_{\infty}>0, a_{\infty}>0$ with $\beta_{\infty}=a_{\infty} \tau_{\infty}^{2}$.

Lemma. 2.1 (Ellis-Pinsky [2]). There exists $\kappa_{0}>0$ such that if $|k| \leq \kappa_{0}$ and $\operatorname{Re} \lambda>0$,

$$
\begin{equation*}
\left(\lambda-B^{\infty}(k)\right)^{-1}=\sum_{j=0}^{n+1} \frac{1}{\lambda-\lambda_{j}(k)} P_{j}(k)+\left(\lambda-B^{\infty}(k)\right)^{-1} P(k) . \tag{2.1}
\end{equation*}
$$

$\lambda_{j}(k)$'s are C^{∞} functions of k and
(2.2) $\quad \lambda_{j}(k)= \pm i|k| \lambda_{j}^{(1)}-|k|^{2} \lambda_{j}^{(2)}+O\left(|k|^{3}\right)$
with $\lambda_{j}^{(1)}$ real and $\lambda_{j}^{(2)}>0 . \quad P_{j}(k)$'s are also C^{∞} functions of k and one-dimensional projections commuting with $B^{\infty}(k), P(k)=1-\sum P_{j}(k)$.
$(1+|\xi|)^{\alpha} P_{j}(k)$ and $P_{j}(k)(1+|\xi|)^{\alpha}$ are bounded operators in $L^{2}\left(\boldsymbol{R}^{n}\right)$. $\left(\lambda-B^{\infty}(k)\right)^{-1} P(k)$ is analytically continued to $\left\{\operatorname{Re} \lambda \geq-\sigma_{1}\right\}$ with $\sigma_{1}>0$ and uniformly bounded in $k \in R^{n}$ and λ there.

Put $P^{\prime}(k)=\sum P_{j}(k), P^{\prime} u=(2 \pi)^{-n} \int_{|k| \leq k_{0}} e^{i k \cdot x} \hat{u}(k, \xi) d k$ and $P=1-P^{\prime}$.
Denote by $\left\|\|\right.$ the norm in X. Let $X_{1}=L^{2}\left(\boldsymbol{R}_{\xi}^{n} ; L^{1}\left(\boldsymbol{R}_{x}^{n}\right)\right)$ with norm $\| \|_{1}$, and $X_{\infty}=L^{2}\left(\boldsymbol{R}_{\xi}^{n} ;|\xi| d \xi ; L^{\infty}\left(\boldsymbol{R}_{x}^{n}\right)\right)$ with norm $\left\|\|_{\infty}\right.$.

Lemma 2.2 (cf. [4] and [5]). For $u \in X \cap X_{1}$,

(2.3) $\left\|e^{t B^{\infty}} \mathrm{P} u\right\| \leq C_{0} e^{-\sigma_{1} t}\|u\|$,
(2.4) $\left\|e^{t B^{\infty}} P^{\prime} u\right\|_{\infty} \leq C_{0}(1+t)^{-n / 4}\|u\|$,
(2.5) $\left\|\left(\lambda-B^{\infty}\right)^{-1} P^{\prime} u\right\|_{\infty} \leq C_{0}(1+|\lambda|)^{-1}\|u\|_{1}, \lambda \in \sum\left(\beta_{\infty}, a_{\infty}\right)$,
(2.6) $\left\|\left(\lambda-B^{\infty}\right)^{-2} P^{\prime} u\right\|_{\infty}<C_{0} b_{n}(|\lambda|)\|u\|_{1}, \lambda \in \sum\left(\beta_{\infty}, a_{\infty}\right)$,
where $b_{3}(s)=s^{-1 / 2}, b_{4}(s)=\log \left(1+s^{-1}\right)$, and $b_{n}(s)=1, n \geq 5$.
(2.7) $\int_{-\infty}^{\infty}\left\|\left(\sigma+i \tau-B^{\infty}\right)^{-1} P u\right\|^{2} d \tau \leq C_{0}\|u\|^{2}, \sigma \geq-\beta_{\infty}$.

All these estimates hold for $B^{\circ *}=\xi \cdot \nabla_{x}-\nu(\xi)+K$.
3. Exterior problem. Let X and X_{1} be as in $\S 2$ with R_{x}^{n} replaced by Ω. Let $D=\left\{u \in X ;\left(\xi \cdot \nabla_{x}+\nu(\xi)\right) u \in X\right\}$ and $Y_{ \pm}=L^{2}\left(S^{ \pm} ; \rho\right)$ with norm $|\quad|_{ \pm}$. Any $u \in D$ has its trace $\gamma^{ \pm} u$ on $S^{ \pm}$, that is,

$$
\begin{aligned}
& \left|\gamma^{-} u\right|_{-} \leq 2\|u\|\left\|\left(\xi \cdot \nabla_{x}+\nu(\xi)\right) u\right\|, \\
& \left|\chi(\xi) \gamma^{+} u\right|_{+} \leq C_{x}\|u\|\left\|\left(\xi \cdot \nabla_{x}+\nu(\xi)\right) u\right\|
\end{aligned}
$$

where $\chi(\xi)$ is a bounded function with compact support.
Define a closed linear operator $A=-\xi \cdot \nabla_{x}-\nu(\xi)$ with $D(A)$ $=\left\{u \in D ; \gamma^{+} u=C \gamma^{-} u\right\}$. $\|C\| \leq 1$ implies that for $u \in D(A)$
(3.1) $\operatorname{Re}(A u, u) \leq-\nu_{0}\|u\|^{2}$.

Next two lemmas are useful to show that A generates a semi-group in $L^{2}(Q)$.

Lemma 3.1. Let X and X_{1} be as in §2. (i) For $\sigma>-\nu_{0}$ and $u \in X$, there hold

$$
\begin{equation*}
\left|\gamma^{ \pm}\left(\sigma+i \tau-A^{\infty}\right)^{-1} u\right|_{ \pm}^{2} \leq \frac{2}{\sigma+\nu_{0}}\|u\|^{2} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\gamma^{ \pm}\left(\sigma+i \tau-A^{\infty}\right)^{-1} u\right|_{ \pm}^{2} d \tau=2 \pi \int_{0}^{\infty} e^{-2 \sigma t}\left|\gamma^{ \pm} e^{t A^{\infty}} u\right|_{ \pm}^{2} d t \leq 2 \pi\|u\|^{2} \tag{3.3}
\end{equation*}
$$

(ii) For $\lambda \in \sum\left(\beta_{\infty}, a_{\infty}\right)$ and $u \in X \cap X_{1}$, there hold
(3.4) $\left|\gamma^{ \pm}\left(\lambda-B^{\infty}\right)^{-1} P^{\prime} u\right|_{ \pm} \leq C_{1}(1+|\lambda|)^{-1}\|u\|_{1}$,
(3.5) $\left|\gamma^{ \pm}\left(\lambda-B^{\infty}\right)^{-2} P^{\prime} u\right|_{ \pm} \leq C_{1} b_{n}(|\lambda|)\|u\|_{1}$.
(iii) For $\sigma>-\beta_{\infty}$ and $u \in X$, there hold
(3.6) $\left|\gamma^{ \pm}\left(\sigma+i \tau-B^{\infty}\right)^{-1} P u\right|_{ \pm} \leq C_{1}\|u\|$,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\gamma^{ \pm}\left(\sigma+i \tau-B^{\infty}\right)^{-1} P u\right|_{ \pm}^{2} d \tau \leq C_{1}\|u\|^{2} \tag{3.7}
\end{equation*}
$$

Let $S^{+}(\xi)=\{x \in \partial \Omega ; n(x) \cdot \xi>0\}$ and $\Omega^{+}(\xi)=\left\{x+t \xi ; x \in S^{+}(\xi)\right.$ and
$t>0\}$. For $g(x, \xi) \in Y_{+}$we define $R(\lambda) g \in X$ by

$$
(R(\lambda) g)(x+t \xi, \xi)=\left\{\begin{array}{l}
e^{-2 t} e^{-\nu(\xi) t} g(x, \xi), x+t \xi \in \Omega^{+}(\xi), \\
0, \text { elsewhere } .
\end{array}\right.
$$

For $\sigma>-\nu_{0}, R(\sigma+i \tau)$ is a bounded operator from Y_{+}to X with norm $\leq\left(2\left(\sigma+\nu_{0}\right)\right)^{-1 / 2}$.

Lemma 3.2. Let $\lambda=\sigma+i \tau, \sigma>-\nu_{0}$. Then we have (i) $R(\lambda) g \in D$, (ii) $\left(\lambda+\xi \cdot \nabla_{x}+\nu(\xi)\right) R(\lambda) g=0$ in Q, (iii) $\gamma^{+} R(\lambda) g=g$ and $\gamma^{-} R(\lambda) g=0$, (iv) $\left\||\xi|^{-1 / 2} R(\lambda) g_{1}\right\| \leq|\partial \Omega|^{1 / 2}\left(\sigma+\nu_{0}\right)^{-1}|g|_{+}, \quad$ (v) $\quad\|K R(\lambda) g\|_{1} \leq d_{1}|\partial \Omega|^{1 / 2}(\sigma$ $\left.+\nu_{0}\right)^{-1}|g|_{+}$and (vi) $R(\lambda)^{*}=\gamma^{+}\left(\bar{\lambda}-A^{\infty *}\right)^{-1}$. Here $|\partial \Omega|$ is the measure of $\partial \Omega$.

For a function u on Q, let $e u$ be the extension of u to Q^{∞}, by putting $e u=0$ outside Q. Denote by $r v$ the restriction of a function v on Q^{∞} to Q. We can easily see that
(3.8) $(\lambda-A)^{-1}=r\left(\lambda-A^{\infty}\right)^{-1} e-R(\lambda)\left(\gamma^{+}-C \gamma^{-}\right)\left(\lambda-A^{\infty}\right)^{-1} e$ for $\operatorname{Re} \lambda$ $>-\nu_{0}$. Because of (3.1), A generates a semi-group in X and $\left\|e^{t a}\right\|$ $\leq e^{-\nu_{\nu_{0}}}$.

Since K is a bounded operator in $X, B=A+K$ generates a semigroup in X. The inequality $\operatorname{Re}(B u, u) \leq 0$ implies $\left\|e^{t B}\right\| \leq 1$. By the resolvent equation we have

$$
(\lambda-B)^{-1}=\left\{1-(\lambda-A)^{-1} K\right\}^{-1}(\lambda-A)^{-1} .
$$

From the next lemma we see that for any $\nu_{2} \in\left(0, \nu_{0}\right)$ there exists $\tau_{2}>0$ such that $\left\|\left\{1-(\lambda-A)^{-1} K\right\}^{-1}\right\| \leq C_{2}$ for $\lambda \in C\left(-\nu_{2}, \tau_{2}\right)$.

Lemma 3.3. $r^{ \pm}\left(\lambda-A^{\infty}\right)^{-1} K$ is a compact operator from $L^{2}\left(Q^{\infty}\right)$ to $Y_{ \pm}$. For any $\nu_{2} \in\left(0, \nu_{0}\right),\left\|\left(\sigma+i \tau-A^{\infty}\right)^{-1} K\right\| \rightarrow 0$ as $|\tau| \rightarrow \infty$ uniformly in $\sigma \geq-\nu_{2}$.

Now we note another expression of $(\lambda-B)^{-1}$;
(3.9) $\quad(\lambda-B)^{-1}=r\left(\lambda-B^{\infty}\right)^{-1} e-R(\lambda)\left(\gamma^{+}-C \gamma^{-}\right)\left(\lambda-B^{\infty}\right)^{-1} e-(\lambda-B)^{-1}$ $\times K R(\lambda)\left(\gamma^{+}-C \gamma^{-}\right)\left(\lambda-B^{\infty}\right)^{-1} e$.
Putting $\tilde{C}=\gamma^{+}-C \gamma^{-}$, we have
(3.10) $\left\{1+(\lambda-B)^{-1} K\right\}\left\{1+R(\lambda) \tilde{C}\left(\lambda-B^{\infty}\right)^{-1} K e\right\}=1+r\left(\lambda-B^{\infty}\right)^{-1} K e$.

Put $p=e r, p^{\prime}=1-p$ and $B_{o}^{\infty}=A^{\infty}+K p^{\prime}=B^{\infty}-K p$. Then we have $\left\{1-\left(\lambda-A^{\infty}\right)^{-1} K p^{\prime}\right\}\left\{1+\left(\lambda-B_{o}^{\infty}\right)^{-1} K p^{\prime}\right\}=1 \quad$ and $\quad\left\{1-\left(\lambda-B_{o}^{\infty}\right)^{-1} K p\right\}\{1+(\lambda$ $\left.\left.-B^{\infty}\right)^{-1} K p\right\}=1$ in $L^{2}\left(Q^{\infty}\right)$. $\quad\left(\lambda-A^{\infty}\right)^{-1} K p^{\prime}$ is a compact operator in $L^{2}\left(Q^{\infty}\right)$ and B_{o}^{∞} has no eigenvalues on the imaginary axis. Therefore from the similar argument of $\S 1,\left(\lambda-B_{o}^{\infty}\right)^{-1}$ exists for $\operatorname{Re} \lambda \geq-\nu_{3}, 0<\nu_{3}$ $<\nu_{0}$, as an operator in $L^{2}\left(Q^{\infty}\right)$. Thus $\left\{1+\left(\lambda-B^{\infty}\right)^{-1} K p\right\}^{-1}=\{1-(\lambda$ $\left.\left.-B_{o}^{\infty}\right)^{-1} K p\right\}$ exists for $\operatorname{Re} \lambda \geq-\nu_{3}$. Hence $\left\{1+r\left(\lambda-B^{\infty}\right)^{-1} K e\right\}^{-1}$ exists for $\operatorname{Re} \lambda \geq-\nu_{3}$ as an operator in $X=L^{2}(Q)$. Thus $\left\{1-(\lambda-A)^{-1} K\right\}^{-1}=\{1+(\lambda$ $\left.-B)^{-1} K\right\}$ exists if and only if $\left\{1+R(\lambda) \tilde{C}\left(\lambda-B^{\infty}\right)^{-1} K\right\}^{-1}$ exists, when $\operatorname{Re} \lambda \geq-\nu_{3}$. (3.9), (3.10) and the operator equality $(1+T U)^{-1}=1-T(1$ $+U T)^{-1} U$ imply that
(3.11) $\quad(\lambda-B)^{-1}=r\left(\lambda-B^{\infty}\right)^{-1} e-\left[\gamma^{+}\left(\lambda-B^{\infty}\right)^{-1} e\right]^{*}\left\{1+\tilde{C}\left(\lambda-B^{\infty}\right)^{-1}\right.$ $\times K e R(\lambda)\}^{-1} \tilde{C}\left(\lambda-B^{\infty}\right)^{-1} e$.

Putting $T(\lambda)=\tilde{C}\left(\lambda-B^{\infty}\right)^{-1} K e R(\lambda)$, we have
Lemma 3.4. (i) $T(\lambda)$ is a compact operator on Y_{+}for $\lambda \in \sum\left(\beta_{\infty}, a_{\infty}\right)$.
(ii) $T(\lambda)$ and $T^{\prime}(\lambda)$ are analytic in $\sum\left(\beta_{\infty}, a_{\infty}\right) \backslash\{0\}$ and
(3.12) $\|T(\lambda)\| \leq C_{3},\left\|\frac{d}{d \lambda} T(\lambda)\right\| \leq C_{3} b_{n}(|\lambda|)$.
(iii) There exists $\sum(\beta, a) \subset \sum\left(\beta_{\infty}, a_{\infty}\right)$ such that for $\lambda \in \sum(\beta, a)$ $\{1+T(\lambda)\}^{-1}$ exists and
(3.13) $\left\|\{1+T(\lambda)\}^{-1}\right\| \leq C_{3}$.

Let $U(t)$ be the inverse Laplace transform of $\{1+T(\lambda)\}^{-1} \tilde{C}\left(\lambda-B^{\infty}\right)^{-1} e$. Then (3.11) implies that for u and $v \in X$

$$
\left(e^{t B} u, v\right)=\left(r e^{t B \infty} e u, v\right)-\int_{0}^{t}\left\langle U(s) u, \gamma^{+} e^{(t-s) B^{\infty} *} e v\right\rangle_{+} d s
$$

From (2.4) and (3.7) for $B^{\infty *}$, it follows that

$$
\begin{gathered}
\left|\gamma^{+} e^{t B^{\infty *}} P^{\prime *} e v\right|_{+} \leq C_{0}|\partial \Omega|^{1 / 2}(1+t)^{-n / 4}\|v\|, \\
\int_{0}^{\infty} e^{2 \sigma_{0} t}\left|\gamma^{+} e^{t B^{\infty *}} P^{*} e v\right|_{+}^{2} d t \leq C_{1}\|v\|^{2}
\end{gathered}
$$

Put $U(t)=U_{1}(t)+U_{2}(t)$, where

$$
\begin{aligned}
& U_{1}(t)=\frac{1}{2 \pi i} \int_{\Gamma_{1}} e^{\lambda t}\{1+T(\lambda)\}^{-1} \tilde{C}\left(\lambda-B^{\infty}\right)^{-1} e d \lambda \\
& U_{2}(t)=\frac{1}{2 \pi i} \int_{\Gamma_{2}} e^{\lambda t}\{1+T(\lambda)\}^{-1} \tilde{C}\left(\lambda-B^{\infty}\right)^{-1} e d \lambda
\end{aligned}
$$

with $\Gamma_{1}=\left\{\lambda=-a \tau^{2}+i \tau ;|\tau| \leq \tau_{0}\right\}$ and $\Gamma_{2}=\left\{\lambda=-\beta+i \tau ;|\tau| \geq \tau_{0}, \beta=a \tau_{0}^{2}\right\}$. Then on account of Lemma 3.4, we get

$$
\begin{aligned}
& \left|U_{1}(t) u\right|_{+} \leq C_{4}(1+t)^{-1}\|u\|_{1}, \\
& \int_{0}^{\infty} e^{2 \beta t}\left|U_{2}(t)\right|_{+}^{2} d t \leq C_{4}\|u\|^{2} .
\end{aligned}
$$

Thus we have

$$
\left|\left(e^{t B} u, v\right)\right| \leq C_{0}(1+t)^{-n / 4}\left(\|u\|_{1}+\|u\|\right)\|v\|+C_{5} a_{n}(t)\left(\|u\|_{1}+\|u\|\right)\|v\|,
$$

which proves (1.8).
Remark. Recently we obtained decay estimates for solutions of Cauchy problem of the linearized Boltzmann equation with a cut-off soft potential.

References

[1] Asano, K.: On the initial boundary value problem of the non-linear Boltzmann equation (to appear).
[2] Ellis, R., and Pinsky, M.: The first and second fluid approximation to the linearized Boltzmann equation. J. Math. Pures et Appl., 54, 125-156 (1975).
[3] Gard, H.: Asymptotic theory of the Boltzmann equation. II. Rarefied Gas Dynamics. Vol. 1 (ed. by Lemmann, J. A.), Academic Press, New York (1963).
[4] Nishida, T., and Imai, K.: Global solutions to the initial value problem for the non-linear Boltzmann equation. Publ. R.I.M.S., 12, 229-239 (1976).
[5] Ukai, S.: Les solutions globales de l'équation de Boltzmann dans l'espace tout eutier et dans le demi-espace. C. R. Acad. Sci. Paris, 289, 317-320 (1976).
[6] -: On the exterior problem to a linearized Boltzmann equation with the reverse reflection boundary condition (preprint).

[^0]: *) Department of Applied Physics, Osaka City University.
 **) Institute of Mathematics, Yoshida College, Kyoto University.

