11. A Remark on Convergence of Nonlinear Semigroups

By Yoshikazu Kobayashi Faculty of Engineering, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 13, 1979)

- 1. Introduction. Let X be a real Banach space. Let $A_n, n=1$, 2, ..., and A be dissipative operators in X which satisfy the conditions $R(I-\lambda A_n)\supset \overline{D(A_n})$ and $R(I-\lambda A)\supset \overline{D(A})$ for $\lambda>0$.
- Let $\{T_n(t); t \geq 0\}$ and $\{T(t); t \geq 0\}$ be the (nonlinear) semigroups generated by A_n and A in the sense of Crandall-Liggett [6]. It was shown by Brezis-Pazy [4] that if $\overline{D(A)} \subset \overline{D(A_n)}$, $n=1,2,\cdots$, then the following property (i) implies the property (ii).
- (i) $\lim_{n\to\infty} (I-\lambda A_n)^{-1} = (I-\lambda A)^{-1}$ for each $\lambda > 0$ and $x \in \overline{D(A)}$.
 - (ii) $\lim_{n\to\infty} T_n(t) = T(t)x$

for each $x \in \overline{D(A)}$ and the limit is uniform on bounded t-intervals.

Our aim in this note is to show that the property (ii) implies (i) under some additional conditions. Precisely, we shall show the following

Theorem. Let X^* be uniformly convex. If $\overline{D(A)}$ is convex and $\overline{D(A)} \subset \overline{D(A_n)}$, $n=1,2,\cdots$, then the property (ii) implies the property (i).

The above theorem is due to Bénilan [3] in the Hilbert space case. The idea of our proof of the theorem is essentially due to the recent work [1] of Baillon. As usual, we define the duality map F on X into X^* by $F(x) = \{x^* \in X^* ; \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$. If X^* is uniformly convex, then F is single-valued and uniformly continuous on each bounded set of X. We refer to Barbu [2] for some properties of the duality map and nonlinear semigroups.

2. Proof of Theorem. Let D(A) be convex and $\overline{D(A)} \subset \overline{D(A_n)}$, $n=1,2,\cdots$, and assume the property (ii). Let $x \in \overline{D(A)}$ and $\lambda > 0$ be fixed. We set $y_n = (I - \lambda A_n)^{-1}x$. We want to show that y_n converges to $(I - \lambda A_n)^{-1}x$ as $n \to \infty$. For the purpose, we prepare some lemmas.

Lemma 1. $||y_n|| = O(1)$ as $n \to \infty$.

Proof. By Theorem 9 in [4], we have

$$||y_n - x|| \le \frac{4}{\lambda} \int_0^{\lambda} ||T_n(\tau)x - x|| d\tau.$$

Since $T_n(\tau)x$ is bounded as $n\to\infty$ uniformly for $\tau\in[0,\lambda]$ by (ii), it follows that $||y_n||$ is bounded as $n\to\infty$. Q.E.D.

By the Hahn-Banach theorem, there exists a linear functional L

on l^{∞} such that

$$\underline{\lim}_{k\to\infty} \xi_k \leq L(\{\xi_k\}) \leq \overline{\lim}_{k\to\infty} \xi_k$$

for each $\{\xi_k\} \in l^{\infty}$. We choose such a functional L and define $LIM_{k\to\infty}$ by $LIM_{k\to\infty} \xi_k = L(\{\xi_k\})$. Apparently, $LIM_{k\to\infty}$ is a bounded functional on l^{∞} and enjoys the property that $LIM_{k\to\infty} \xi_k \ge 0$ if $\xi_k \ge 0$. (See [7], p. 104.)

Let $\{y_{n(k)}\}$ be a subsequence of $\{y_n\}$ and define

$$\phi(y) = \frac{1}{2} LIM_{k \to \infty} ||y_{n(k)} - y||^2$$

for each $y \in \overline{D(A)}$. The functional ϕ is convex, continuous, bounded below and coercive (i.e., $\phi(y) \to +\infty$ as $||y|| \to +\infty$). Since X is reflexive and $\overline{D(A)}$ is convex, we have the following (see [2], p. 52)

Lemma 2. There exists a $y_0 \in \overline{D(A)}$ such that $\phi(y_0) = \inf \{ \phi(y) ; y \in \overline{D(A)} \}$.

Let such a $y_0 \in \overline{D(A)}$ be fixed.

Lemma 3. $LIM_{k\to\infty}\langle y_0-y, F(y_0-y_{n(k)})\rangle \leq 0$ for each $y\in \overline{D(A)}$.

Proof. We follow the argument in [1]. Let $y \in \overline{D(A)}$ and $\varepsilon \in (0,1)$. It follows by a property of F (see [2]) that

$$\langle y_0 - y, F(y_0 - y_n - \varepsilon(y_0 - y)) \rangle$$

 $\leq (2\varepsilon)^{-1} (||y_0 - y_n||^2 - ||y_0 - y_n - \varepsilon(y_0 - y)||^2).$

Let n=n(k) and let $k\to\infty$. Then

$$LIM_{k\to\infty} \langle y_0 - y, F(y_0 - y_{n(k)} - \varepsilon(y_0 - y)) \rangle$$

$$\leq \varepsilon^{-1} (\phi(y_0) - \phi((1 - \varepsilon)y_0 + \varepsilon y)) \leq 0.$$

By letting $\varepsilon \to 0+$, we have the desired result, since F is uniformly continuous on bounded sets. Q.E.D.

Lemma 4. $\lim_{k\to\infty} ||y_{n(k)}-y_0||=0$.

Proof. Since $u(t) = T_n(t)z$ is an integral solution of $u'(t) \in A_n u(t)$ for each $z \in \overline{D(A)}$ and $\lambda^{-1}(y_n - x) \in A_n y_n$, we have

$$\begin{array}{c|c} \frac{1}{2} \|T_{n}(t)z - y_{n}\|^{2} - \frac{1}{2} \|z - y_{n}\|^{2} \\ \leq \int_{0}^{t} \langle \lambda^{-1}(y_{n} - x), F(T_{n}(\tau)z - y_{n}) \rangle d\tau \end{array}$$

for each $z \in \overline{D(A)}$ and $t \ge 0$. (See [2].) Put $z = y_0$ and n = n(k) in (1) and let $k \to \infty$. Then it follows by the uniform continuity of F that

$$\begin{aligned} &0 \leq \phi(T(t)y_0) - \phi(y_0) \\ &\leq \text{LIM}_{k \to \infty} \int_0^t \langle \lambda^{-1}(y_{n(k)} - x), F(T(\tau)y_0 - y_{n(k)}) \rangle d\tau. \end{aligned}$$

Divide this by t>0 and let $t\to 0+$. Then it follows by the uniform continuity of F and Lemma 3 with y=x that

$$0 \leq \operatorname{LIM}_{k \to \infty} \langle \lambda^{-1}(y_{n(k)} - x), F(y_0 - y_{n(k)}) \rangle$$

$$\leq -\lambda^{-1} \operatorname{LIM}_{k \to \infty} ||y_0 - y_{n(k)}||^2.$$

Therefore, we obtain

$$0 \leq \underline{\lim}_{k \to \infty} \|y_{n(k)} - y_0\|^2 \leq LIM_{k \to \infty} \|y_{n(k)} - y_0\|^2 \leq 0.$$

Q.E.D.

Set $A_t = t^{-1}(T(t) - I)$ for t > 0. Since $\overline{D(A)}$ is convex and $x \in \overline{D(A)}$, there exists $(I - \lambda A_t)^{-1}x$ for t > 0.

Lemma 5. $\lim_{t\to 0+} (I - \lambda A_t)^{-1} x = (I - \lambda A)^{-1} x$.

Proof. Since u(t) = T(t)z is an integral solution of $u'(t) \in Au(t)$ and $\lambda^{-1}((I - \lambda A)^{-1}x - x) \in A(I - \lambda A)^{-1}x$, we have

(2)
$$\frac{1}{2} \|T(t)z - (I - \lambda A)^{-1}x\|^{2} - \frac{1}{2} \|z - (I - \lambda A)^{-1}x\|^{2} \\ \leq \int_{0}^{t} \langle \lambda^{-1}((I - \lambda A)^{-1}x - x), F(T(\tau)z - (I - \lambda A)^{-1}x) \rangle d\tau$$

for each $z \in \overline{D(A)}$ and $t \ge 0$. Put $z_t = (I - \lambda A_t)^{-1}x$ and let $z = z_t$ in (2). By using the fact that $t^{-1}(T(t)z_t - z_t) = \lambda^{-1}(z_t - x)$, we find easily that

$$\langle z_t - x, F(z_t - (I - \lambda A)^{-1}x) \rangle$$

$$\leq \frac{1}{t} \int_0^t \langle (I - \lambda A)^{-1}x - x, F(T(\tau)z_t - (I - \lambda A)^{-1}x) \rangle d\tau,$$

for t>0. By Proposition 1 in [1], there exists $z_0=\lim_{t\to 0+} z_t$. Therefore, by letting $t\to 0+$ in (3), we have

$$\langle z_0 - x, F(z_0 - (I - \lambda A)^{-1}x) \rangle$$

 $\leq \langle (I - \lambda A)^{-1}x - x, F(z_0 - (I - \lambda A)^{-1}x) \rangle,$

which yields $z_0 = (I - \lambda A)^{-1}x$. Hence $\lim_{t \to 0+} z_t = (I - \lambda A)^{-1}x$. Q.E.D.

We have all the material to complete the proof of the theorem. Lemma 4 implies that there exists a subsequence $\{y_{n(k(j))}\}$ of $\{y_{n(k)}\}$ such that $\lim_{j\to\infty}y_{n(k(j))}=y_0$. Put n=n(k(j)) in (1) and let $j\to\infty$. Then we get just the same inequality as in (2) with $(I-\lambda A)^{-1}x$ replaced by y_0 , for each $z\in\overline{D(A)}$ and $t\ge 0$. Therefore, the same argument as in the proof of Lemma 5 implies also that $\lim_{t\to 0+}(I-\lambda A_t)^{-1}x=y_0$. So, by Lemma 5, it turns out that $y_0=(I-\lambda A)^{-1}x$. Hence, $\lim_{j\to\infty}y_{n(k(j))}=(I-\lambda A)^{-1}x$ and $\lim_{n\to\infty}y_n=(I-\lambda A)^{-1}x$ as desired.

References

- J. Baillon: Générateurs et semi-groupes dans les espaces de Banach uniformement lisses. J. Funct. Anal., 29, 199-213 (1978).
- [2] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publ. (1976).
- [3] Ph. Bénilan: Une remarque sur la convergence des semi-groupes nonlinéaires. C. R. Acad. Sci. Paris, 272, 1182-1184 (1971).
- [4] H. Brezis: New results concerning monotone operators and nonlinear semigroups. Analysis of Nonlinear Problems, Kokyuroku RIMS, Kyoto Univ., no. 258, 2-27 (1974).
- [5] H. Brezis and A. Pazy: Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal., 7, 63-74 (1972).
- [6] M. Crandall and T. Liggett: Generation of semi-groups of nonlinear trans-

formations on general Banach spaces. Amer. J. Math., 93, 265-298 (1971). [7] K. Yosida: Functional Analysis. Springer-Verlag (1965).