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§1. Introduction. Let us consider the elliptic curve
1.1 E,:y*=0'—277/4(j —1728))(x—1) (70,1728, )
which is a well known example of an elliptic curve defined over Q(5)
with the absolute invariant j. For any value of j, the point P,: (x, %)
=(1,1) is a Q-rational point of E,. The purpose of this paper is to
prove the following

Theorem 1.1. For every je Q (j+#0, 1728), P, is a Q-rational
point of E, of infinite order.

Corollary 1.2. For any je Q, there exists an elliptic curve K de-
fined over Q such that 1) the absolute invariant is § and 2) rank (E(Q))
>1.

The proof depends on the following remarkable theorem due to Barry
Mazur:

Theorem 1.3 (Mazur [6]). The order of a Q-rational torsion point

of an elliptic curve defined over Q is one of the following :
{1,2,3,4,5,6,7,8,9,10, 12}.

For the proof of our theorem, we first show that, in case j is a
variable over @, P, is a rational point of E, of infinite order, by con-
sidering the associated elliptic surface over the j-line P!. Given a
positive integer m, the set A(m) of j,e Q—{0,1728} such that P, is a
point of exact order m on E,, is obviously finite (cf. Proposition 3.2).
Then by Mazur’s theorem 1.3, A(m) is empty if m>12 or m=11.
Thus we have only to prove that A(m) is also empty for 1<m<10 or
m=12. This will be done case by case.

Here the author would like to thank Prof. T. Shioda who provided
several valuable suggestions.

§2. Rational points on the generic fibre. Put t=277/4(j —1728),
then the equation of E, becomes y*=u*—tx+t. From now on, we call
this E,. We note that if =0, 1728, o, then t=0, o0, 27/4, respectively.
‘We note first the following

Proposition 2.1. rank (¥,(Q(%)))=1, where t denotes a variable
over Q.

Proof. Let B—2>P' be the elliptic surface associated to E,, then
we have (Shioda [9])
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po=r+2+ é (m,— 1),

o; the rank of NS(B),

r; the rank of E,(C(f)),

S ; the finite set of points v of P' for which @-'(v) is a singular fibre,

m, ; number of irreducible components of @-*(v) for v € S.

As is easily seen, the types of the singular fibres are II (t=0), I,
(t=27/4), III* (t=0c0) in Kodaira’s notation ([5]). Therefore m,=1,
Myr=1, m.=8. On the other hand, we have p=0,=10, since B is a
rational elliptic surface (t=(a*—y*/(x—1)). Hence the above formula
shows that r=1. Now the point (x, y)=(1,1) is a Q(¢) rational point
of E,, which cannot be of finite order since there is a singular fibre of
additive type such as @7'(0) ([7], [8]). Therefore rank (¥, (Q(t))=1.

Q.E.D.

Actually we can determine the structure of the abelian group
E (Q(t)) completely :

Proposition 2.2. E,(Q(t)) is an infinite cyclic group generated by
P,=(1,1).

Proof (due to N. Maruyama). As is shown in the proof of the
above proposition, there is no element of finite order in E,(Q(2)).
Furthermore we can show that P,=nQ for any n>2, Q ¢ E,(Q(t)) as
follows. First we recall that the fibre C=0-*(27/4):

Ye=a"— Q27 /Dx2"+ (27/4)z*
(in homogeneous coordinates) is a singular fibre of type I,, i.e. a
rational curve with one ordinary double point. Therefore, if we de-
note by C* the set of non-singular points on C, there is an isomorphism
of C* to the multiplicative group. By elementary computation, we
find that such an isomorphism is given by the following map:
J(@,y,2)=Bx+2y—(9/2)2)/(—3x+2y+(9/2)2).
Let us consider the induced group homomorphism
restriction

73 EQ®) o @-L-u D).
Note that f(P)=—(1—+/2)*. Suppose that we have P,=nQ, for some
Qe E,(Q(t)). Then
F@r=fmQ)=f(P)=—1A—+2).

But since the algebraic integer 1—+/2 is a fundamental unit of
Q' 2) (cf. [1, Chapter 2, § 5]), nmust be Lor2 or 4. The last two cases
do not occur because f(Q)"<0. This proves that P, is a generator of
E.(Q®). Q.E.D.

§3. Preliminaries. We use the following propositions to prove
our theorem.

Proposition 3.1 (Cassels [2]). Let P=(X,Y) be a point on the
elliptic curve

E:y=2*—~Ax—B
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and let m be a positive integer. Then the point mP has the coordi-
nates (Qnrn’s On¥nd) where @, 4y, 0, are polynomials in X, Y, A, B,
with integer coefficients such that if 2| m then 2%||y., (| denotes exact
divisibility) and they are given inductively by the relations

=1, ,=2Y, ,=3X*—64X*—-12BX—A,,

P, =4Y(X*—5AX*—20BX*—-5A4:X*—-4ABX —8B*+ A%,

Sosz"p'zz—‘l/'m—ﬂlfmu’ 4Ywm=‘pm+2‘pfn—1_‘pm—2wfn+v

Vom =2V @y, W2m+1=‘Pm+2‘P‘fn“¢m-ﬂWn+1'

Proposition 3.2 (Cassels [3]). Let (x,, ) be a point of finite order
on the E in Proposition 3.1, where A,Be Z. Then x,,y,€ Z; more-
over y¥,=0 or yi| D(E)= —4A*+27B".

§4. Rational points on special fibres. Proof of Theorem 1.1.
Now we go back to the elliptic curve (1.1) with P=P,. Then ¢,, y,, o,
in Proposition 3.1 are polynomials in ¢ with integer coefficients. Let
us write these ¢, (t), ¥, (t), 0, ().

Lemma 4.1. Let t,e Q—{0,27/4}. If P,=(1,1) is a point of finite
order on E,,, then t, must be one of the following values:

4.1) t,==+1, +3, £5, +7, £9, +1/3, +1/5.

Proof. If P,=(1,1) is a point of finite order m on F,,, then (¢,
=0 for 2<m <10 or m=12 by Theorem 1.3 and Proposition 3.1. Here
we compute the leading coefficients (=1.c.) and constant terms (=const.)
of 4r,,(t):

degree l.c. const. degree l.c. const.
\;,1 0 1 1 V.| 12 —1 4
rg 0 2 2 Vr 15 8 8
Y A | 3 r 20 1 9
Wy 3 4 4 V1o 24 10 10
s 6 1 5 Vi 30 -1 11
Ve 8 6 6 Vi 35 12 12

We note that 2|, 4|y, 2|V, 8|y 2|V, and 4[4y, by (3.1). Therefore
t, must be one of the values in (4.1). Q.E.D.

Lemma 4.2. For any value of t, in (4.1), P,=(1, 1) is not a point
of finite order on E,,.

Proof. For t,=+1, +3, +5, £7, +9, we can use Proposition
3.2 directly to show P,=(1,1) is not a point of finite order on E,,
For instance, if t,=1, we get 2P,=(—1, 1), 3P,=(0, —1), 4P,=(3, —5).
But (—5)2YD(E) =23, hence P, cannot be a point of finite order on E,
by Proposition 3.2. We sum up the computation for {,=—1, 3, +5,
+7, +9 as follows:

E_,:2P,=(2, —38), (—3)*4D_,=31.
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E,:3P,=(13/9, —85/2T) ¢ ZX Z.

E_,:2P,=(7, —19), (—19)*/D_,=351.

E,:2P,=(—1, —8), (—3)*yD,=25.17.

E_;:2P,=(14, —53), (—53)*YD_,=25-41.

E,:4P,=(9/4, —13/8) e ZX Z.

E_,:2P,=(23, —111), (—111)*{D_,=49.55.

E,:2P,=(7,17), 17°fD,= —3°.

E_,:2P,=(34, —199), (—199)*/D _,=3°.1.

In case t,==+1/3, +1/5, we can transform the coefficients of E,, into
integers by appropriate birational transformations fixing =zero,
therefore by isomorphisms of abelian varieties. Then we can
proceed as above.

E, i : =FE: y*=2"—3%'+3 by o'=3%, y'=3%. P, corresponds
to P;=(9,27). 2P;=(—2,17), 17*/D;,;=3°-T17.

E_,: =E;: y*=a"+82 -3 by /=8%, y'=3%. P, corresponds
to Pj=(9,27). 2P;=(7, —17), (—17)*4D;,=3°-85.

E,: =H 5 y*=2"—5%+5 by «’ =5%, y'=5%. P, corresponds
to Pj=(5,5%. 2P,=(—1,57), 57°YD;,=5°-131.

E_: =E 5 y*=2"+5% —5 by o’ =5, y'=5%. P, corresponds
to Py=(5%,5%. 2P;=(14, —37), (—37)*/D’,,,=5°-139.

This completes the proof of Lemma 4.2. Q.E.D.

Theorem 1.1 follows immediately from these two lemmas.

To show the corollary, it suffices to find elliptic curves defind over
Q with 7=0, 1728 and rank >1. But this is a well known fact. For
example, if we take E': y*=a°—2, and E”: y*=ua°—2x, then j(E')=0
and j(E”)=1728. Moreover, by Proposition 3.2, we see that (3,5)
e E'(Q) and (2,2) € E”(Q) are not points of finite order.

§5. Remark. The family E, (see (1.1)) has connection with the
theory of universal families of elliptic curves with level N structure.
For N>3, there exists such a family E, parametrized by an affine
curve C,. Moreover, in case the base field is C, Shioda proved E' (K y)
=(Z/NZ)*, where K, denotes the function field of the base curve Cy
(Shioda [9], [10]). On the other hand, there is no such family for N
<2. However, for N=2, it is known that the Legendre form, E,: %
=x(x—1)(x—1), gives an ‘“almost” universal family and FE,(k(2)
=(Z/2Z)*, where k denotes the base field (see [4], [10]). For N=1,
the situation is quite different. In fact, the family E,, defined by (1.1),
for variable 7, does have a rational point of infinite order (Proposition
2.1). This observation was the starting point of the present work.
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