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76. Poisson Transformations on Affine Symmetric Spaces™

By Toshio OSHIMA**)

(Communicated by Koésaku Yosipa, M. J. A., Nov. 12, 1979)

1. Introduction. Let G be a connected real semisimple Lie group
with finite center, ¢ any involutive analytic automorphism of G, and
H any closed subgroup which lies between the totality G° of fixed points
of ¢ and the identity component of G°. Then the homogeneous space
G/H is an affine symmetric space. It is known that any eigenfunction
of all invariant differential operators on a Riemannian symmetric
space of the noncompact type can be represented by the Poisson integral
of a hyperfunction on its maximal boundary, which was conjectured
by Helgason [2] and completely solved by [8]. In this note we define
a generalization of the Poisson integral on G/H and extend the result
in [3] to the case of G/H. For example, by the involution (g, 9")—(g’, 9)
of GX @G, the group G itself can be regarded as an affine symmetric
space and then our result gives integral representations of simultaneous
eigenfunctions of biinvariant differential operators on G. If G/H
satisfies some conditions, this problem was studied by [6] (cf. also [5]).
An extended version of this note is to appear later.

2. Preliminary results. We fix a Cartan involution 6 of G com-
muting with ¢ (cf. [1] for the existence of §) and also denote by ¢ and
0 the corresponding involutions of the Lie algebra g of G. Let g=f-+p
(resp. g=5-+0q) be the decomposition of g into +1 and —1 eigenspaces
for ¢ (resp. o). Let a be a maximal abelian subspace of pNq, a, a
maximal abelian subspace of p containing a, and j a Cartan subalgebra
of g containing both a, and a maximal abelian subspace of mNq, where
m denotes the centralizer of a, in . Furthermore we put j=jNq and
t=jN¥f. For a linear subspace b of g,b, denotes the complexification
of b. Ifbisasubalgebra, U(b) denotes the universal enveloping algebra
of b,. Let Ad (resp. ad) denote the adjoint representation of G (resp.
g.) on g, or U(g). For alinear subspace & of ], a* denotes the dual space
of d and a} the complexification of @*. Then we put g,(G; H={Xeg,;
ad(Y)X=A(X) for all Y € a} for any 1 in aF and moreover X(d)={2¢€ a}
—{0}; g.(a; D+{0}}. By the Killing form {, > of the complex Lie
algebra g,, we identify j{* and j,, and therefore &* is identified
with a subspace of j*. Let K denote the analytic subgroup of G cor-
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responding to ¥, and M (resp. M*) the centralizer (resp. the normalizer)
of a,in K. The quotient group M* /M is the Weyl group of the restricted
root system X(a,), which we denote by W(a,).

Lemma 1. i) {is a maximal abelion subspace of q.

ii) 2(j) and 2(a) satisfy the axiom of root systems. Let W(3) and
W(a) denote the corresponding Weyl groups.

iii) Put W(i),={we W@ ;wl=1id}, W) ={we W({); w(a)=a},
W(a,),={we W(a); wl|.=1d}, W(a,)={w e W(a,) ; w(a)=a} and W(a,; H)
=M*NH)/(MNH). Then W(a,),CW(a,; HYCW(a,) and the quotient
groups WD) /W), and W°(a,) | W(a,), are naturally identified with W(a).

iv) We can define a system of compatible orderings of the root
systems 3(7), 2(a,), 2} and Z(a). Let 3()*, 3(a)*, TH* and Z(a)*
denote the corresponding sets of all positive roots.

Let p denote half the sum of the elements of 3(j)* and D(G/H) the
C-algebra of all G-invariant differential operators on G/H. For any
De U(g), we define D, e U(}) so that D—D;e > e+ 8.(G; —a)U(g)
+U(@Yh and we denote by (D) the image of D, under the automor-
phism of U(j) which maps X to X—p(X) for every X e¢i. Putting
U@"={DeU(g); Ad(h)D=D for any h € H}, we have

Lemma 2. The map ¢ and the natural identification D(G/H)
~U(@)?/U@YyN U(@* induce the surjective C-algebra isomorphism

¢: D(G/H)-=51(3),
where 1(}) denotes the set of all W(j)-invariants in U(j).

Extending any v € j* to an algebra homomorphism of U(j) onto C,

we define a system of differential equations on G/H :
M,: (D—v((D)))u=0  for all D e D(G/H).

3. Eigenspaces and principal series. For a real analytic manifold
U we denote by BU) (resp. 9'(U), C=(U), A(U)) the space of Sato’s
hyperfunctions (resp. Schwartz’ distributions, indefinitely differen-
tiable functions, real analytic functions) on U. Then S({U)>9'(U)D
C>(U)DAU). Each xe G acts on the linear space B(G) by the left
translation

7.0 J(@)= (. )@= (@"g)  for fe B(G)
and B(G/H) is identified with the G-submodule {f € B(G); f(gh)= f(g)
for all h € H} of B(G). We define a Fréchet space
Ci(G/H)={f e C*(G/H); ||fllp,;<oo for any (D, 7) € U(g) X Z}

with the seminorms || ||,,; and the dual space C.(G/H) of C,(G/H)®dg,
where any D € U(g) is regarded as a left-invariant differential operator
on G,|fllp,;=SUPu,x)exx. |(DS)(k exp X)|exp (j¢X, X)"”) and dg is an
invariant measure on G/H. We denote by S¥(G/H ; M) the space of
all solutions of ¥, in ¥(G/H), where ¥=B, 9’, C;, C* or .

We put n=gN3 .erey+ 80,5 @). Let N,A and A, denote the an-
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alytic subgroups of G corresponding to un,a and a,, respectively. We
define a parabolic subgroup P,=Uuew,. MANwN. LetP,=M,A,N,
be the Langlands decomposition of P, such that M,A, centralizes a.
Let m, denote the Lie algebra of M, and let m,=m(s)+gloc) be the
decomposition of m, into the direct sum of a compact reductive Lie
algebra ni(s) and a noncompact semisimple Lie algebra g(s). Let M(o),
and G(o) denote the analytic subgroups of G corresponding to m(s) and
g(o), respectively. Putting M(o)=M(0),Ad (Ad(K)N exp ad(v —1a,),
we have
Lemma 3. M(e)CM, Glo)CH and M,=M(s)G(0).
Let w,, w,, - - -, w, be representatives of the factor set
W(a,; H)\W°(a,),
where r=[W<(a,): W(a,; H)]. We choose representatives w, of w, in
M* so that m,NAd@;H=m,NY (@G=1,---,7). We put M(s),=M(0)
Nw: Hw,, Q,=G()A,N, and P, ,—M(),Q,. Let M(o)* denote the set
of all equivalence classes of irreducible unitary representations of M(s¢)
with non-zero M(s),-fixed vectors. For a de ﬁ(?)i, let x, be the cor-
responding character and let 4 e (m(¢) N1)¥ be the dominant weight of
the corresponding representation of m(s) which is compatible with the
orderings in Lemma 1. Then 6 e t*. Conversely, for a 4 ¢ t¥, we put
W) ={(6,9); i=1,---,7,5¢ M) and 5+ple Wi, (—A}. Last in
this section we define idempotent maps
i F(@—>F(G)

w (O]
7@ —@N@=u@ [ [ uonm)gmimdm
and G-modules Tl
F(G/Q,; LY)={f e F(®@; fgzan)= f(g) exp (21— p)(log a))
forall ge G, x€ G(o), ac A, and ne N},
F(G/P,,:; La)a={f/€\ff(G/Q., s L) oif =11
where te {1, ---,7},0e M(o)', F € {B,9,C*and A} and 1€ a¥. In this
note any measure on any compact group is the Haar measure so
normalized that the total measure equals one. We call every
F(G/P,,; L), a function space of principal series for G/H.
4. Poisson transformations. To define Poisson kernels we
prepare the following lemma which easily follows from [4].
Lemma 4. 1) Ui, Hw,P, is a disjoint union of the open subsets
Hw,P, of G and the union is dense in G.
il) (w;'Hw,)N (M(e)AN,)=M(0o), fori=1, ... 7.
For i=1, --., 7, aeﬂf(})‘, ieaf and g e G, we put
[, wmm) exp G—p)XDdm,

if g e Hw,m (exp X)N, with m ¢ M(¢) and X € a,
0 if ge Hw,P,.

hi(5,2; 9)=
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Lemma 5. The functions hi(d,2; 9) on G are continuous when
Re (4—p,a)>0 for all e 3(a)*. They can be meromorphically ex-
tended for all 2e a¥ as distributions on G. The extensions will be
denoted by the same notation and called Poisson kernels.

Then partial Poisson tramsformations P ,, of B(G/Q,; L,) are
defined by

(@5 )(g)=fK SR, —2; 97'k)dk  for fe B(G/Q,; L.

5. The main theorem. We put U={Zn,x;aec () and n,e Z},
B={pe 2(D; Bl;=0and g.(i; HNEN P+ Np)=+{0}} and for each root
B in B we choose a root vector X, in g,(i; HHNENQ+GNY)) so that
2{X,, 0(X,))=—{B, B). For a complex abelian vector space ¢ of f,, we
put €()={pl.; ¢ is a weight of an irreducible unitary representation
of K with non-zero (KN HNM,)-fixed vectors, where u belongs to the
dual of a maximal complex abelian vector space of ¥, containing c}.
Then we can state our theorem.

Theorem 6. i) The following conditions forvin i* are equivalent :

(1) AG/H ; M,)={0},
(2) B(G/H ; M,)={0},
(3) BWwy|)=¢  for any we W(Q).

ii) Assume an element y=(4, 2) € {¥ (4 e t¥, 1€ a¥) satisfies

(A.0) 2isnot a pole of ht (3, —2; g) for any (3, 1) € W(A),

A1) —-2Q,a)/{a,ay &« N={1,2,8, .-} for any a € ()",

A.2) wh—p)|iFal+pl for any (o, g, w) e AXER,) X (W(H
—-W@,

(A.3) <(wi, )+ <{a+p, )+ vV—1{y, X, —a(X,)) for any (a, p, w)
e AXBX WD) and any pu e C(C(X,;—a(X,))).
Then the Poisson transformation

P,.: @ BGIP,.; L)—> BG/H)

(3,8) EBW(A)
defiined by P, (fs,0)=22 PS5 (Fs0€ B(G[P,;; L), is a G-isomor-
phism of the direct sum of function spaces of principal series for G|H
onto the etgenspace B(G/H ; M,) and induces a homeomorphism of
Ponesw @,(G/Pv,i; L), onto C;(G/H, M,).

Here we remark that 4, =%, for any we W(j) and that there
exists an open dense subset (a¥) of af such that every condition in
Theorem 6 ii) holds if B(A)+~¢ and 1 € (aF). Moreover, defining Poisson
kernels by a suitable analytic continuation of linear combinations of
hi(, 2; g), we can omit the condition (A. 0).

The proof of Theorem 6 is based on the construction of the inverse
of P, ,, which is the map of taking the boundary values of eigenfunc-
tions in B(G/H ; ). This method of the proof is also used in [8] and
[6]. By the way, if all the boundary values of an eigenfunction in
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B(G/H; M) vanish, the function must be zero. This implies the
following

Remark 7. For any v in j* there exist closed G-invariant linear
subspaces E, (j € N) of C*(G/H ; M,) and G-equivariant maps @, of E,
to B(G/P,,,; L,),, with the kernel E,,,, respectively, such that E,
=C~(G/H; M)>D---DE,DF,,,D---, E;={0} for a sufficiently large
jand 4,—p|,—9, € {wyv; we W}
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