No. 8]

73. Irreducible Characters of p.Solvable Groups

By Tetsuro OKUYAMA*) and Masayuki WAJIMA**)

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1979)

1. Let G be a finite group and p a prime number. Let B be a p-block of G with a defect group D and b a p-block of $N_{d}(D)$ with $b^{d}=B$. It is conjectured in [1] that the number of irreducible complex characters in B of height 0 equals the number of those in b. In this note we shall show that this conjecture holds for p-solvable groups. A complete proof will be given elsewhere.

2. For a finite group G let Ch(G) (resp. Irr(G)) denote the set of all characters (resp. irreducible characters) of G. If K is a normal subgroup of G and θ is an irreducible character of K, then we put $Irr(G|\theta) = \{\chi \in Irr(G) | (\chi_{\kappa}, \theta) \neq 0\}$ and denote the set of all sums of elements in $Irr(G|\theta)$ by $Ch(G|\theta)$. If B is a p-block of G, let Irr(B) be the set of irreducible characters of G in B.

The following theorem by Fong plays an important role in this note. We describe it using notation in a book of Isaacs [5, § 11].

Theorem (Fong [3]). Let G be a finite group, K a normal p'-subgroup of G and $\theta \in \operatorname{Irr}(K)$. If θ is G-invariant, then there are a finite group \hat{G} , its cyclic central subgroup \hat{K} and $\hat{\theta} \in \operatorname{Irr}(\hat{K})$ such that the following hold:

(1) there is an isomorphism $\tau: G/K \cong \hat{G}/\hat{K}$,

(2) for $K \subseteq H \subseteq G$ let \hat{H} denote the inverse image in \hat{G} of $\tau(H/K)$. For such subgroup H, there is a map $\sigma_H \colon \operatorname{Ch}(H|\theta) \to \operatorname{Ch}(\hat{H}|\hat{\theta})$ such that the following conditions hold for any $\chi, \psi \in \operatorname{Ch}(H/\theta)$:

- (a) $\sigma_H(\chi+\psi)=\sigma_H(\chi)+\sigma_H(\psi)$
- (b) $(\chi, \psi) = (\sigma_H(\chi), \sigma_H(\psi))$
- (c) $\sigma_G(\psi^G) = (\sigma_H(\psi))^{\hat{G}}$.

(3) In (2), if b is a p-block of H such that $\operatorname{Irr}(b) \subseteq \operatorname{Irr}(H|\theta)$, then $\sigma_H(\operatorname{Irr}(b)) = \operatorname{Irr}(\hat{b})$ for some p-block \hat{b} of \hat{H} . Furthermore b and \hat{b} have isomorphic defect groups and σ_H gives a 1–1 height preserving correspondence between $\operatorname{Irr}(b)$ and $\operatorname{Irr}(\hat{b})$.

The following result gives a connection between the above correspondence and Brauer's block correspondence.

Corollary. In (3) in the above theorem assume that $DC_{g}(D) \subseteq H$

^{*)} Department of Mathematics, Faculty of Sciences, Osaka City University.

^{**)} Department of Mathematics, Faculty of Sciences, Hokkaido University.

where D is a defect group of b. Then b^{a} and $\hat{b}^{\hat{g}}$ are defined and $\hat{b}^{\hat{g}} = \hat{b}^{\hat{g}}$.

Proof. Let D_1 be a defect group of \hat{b} and put $B = b^a$. From the proof of Lemma (2C) [3], it follows that D_1 is a Sylow *p*-subgroup of \widehat{DK} . So $DC_a(D) \subseteq H$ implies $D_1C_{\hat{a}}(D_1) \subseteq \hat{H}$ as K is of p'-order. Thus $\hat{b}^{\hat{a}}$ is defined. Now it suffices to show $\hat{b}^{\hat{a}}$ is in fact \hat{B} . Let $\zeta \in \operatorname{Irr}(b)$ and $\zeta^a = \sum a_{\chi}\chi$. For an integer n we denote the p-part of n by n_p . Then by the result of Brauer ([2, (3A)]) we have $(\zeta^a(1))_p = \left(\sum_{\chi \in B} a_{\chi}\chi(1)\right)_p$. From the properties of σ_H in Fong's theorem, we have $\sigma_H(\zeta)^{\hat{a}} = \sum a_{\chi}\sigma_a(\chi)$ and $(\sigma_H(\zeta)^{\hat{a}}(1))_p = \left(\sum_{\sigma_a(\chi) \in \hat{B}} a_{\chi}\sigma_a(\chi)(1)\right)_p$. Thus again by the result of Brauer it follows that $\hat{b}^{\hat{a}} = \hat{B}$ and the theorem is proved.

Proposition. Let G be a finite group with a Sylow p-subgroup P and a normal p'-subgroup K such that $G = KN_G(P)$. Let $\theta \in Irr(K)$ be G-invariant. Put $N = N_G(P)$ and $L = N \cap K$. Then there is a unique $\phi \in Irr(L)$ such that $(\theta_L, \phi) \not\equiv 0 \pmod{p}$ and the number of $\chi \in Irr(G|\theta)$ such that $\chi(1) \not\equiv 0 \pmod{p}$ equals the number of $\psi \in Irr(N|\phi)$ such that $\psi(1) \not\equiv 0 \pmod{p}$.

Proof. The existence and the uniqueness of ϕ follow from the result of Glauberman [4]. From Corollary 6.28 [5] there is a unique extension $\theta_0 \in \operatorname{Irr}(PK)$ of θ such that p does not divide $|\det(\theta_0)|$. Also there is a unique extension $\phi_0 \in \operatorname{Irr}(PL)$ such that p does not divide $|\det(\phi_0)|$. It is easily proved that if θ is extendible to G then so is θ_0 and if ϕ is extendible to N then so is ϕ_0 . First we claim that $|\operatorname{Irr}(G|\theta_0)| = |\operatorname{Irr}(N|\phi_0)|$. This follows from

(*) Assume G/PK is abelian. Then θ is extendible to G if and only if ϕ is extendible to N.

We shall prove (*) by induction on the order of G. Let M be a pcomplement in N. As M/L is abelian, there is a subgroup U with $L \subseteq U \subseteq M$ such that M/U is cyclic and $C_{P/P'}(U) \neq 1$. Assume $C_{P/P'}(U)$ =P/P'. Then $C_P(U)=P$ and every irreducible character in $Irr(UK|\theta)$ or $Irr(U|\phi)$ is *P*-invariant. Furthermore there is a 1-1 correspondence between $\xi \in Irr(UK|\theta)$ and $\eta \in Irr(U|\phi)$ such that $(\xi_{U}, \eta) \not\equiv 0 \pmod{p}$ by Theorem 13.1 and 13.29 [5]. If ϕ is extendible to N, so is to M. Let $\hat{\phi}$ be an extension of ϕ to M and let $\eta = \hat{\phi}_{U}$. Then $|Irr(UK|\theta)|$ $= |Irr(U|\phi)| = |U/L| = |UK/K|.$ So θ is extendible to UK. \mathbf{If} $\xi \in \operatorname{Irr}(UK|\theta)$ such that $(\xi_u, \eta) \not\equiv 0 \pmod{p}$, then ξ is *MK*-invariant since η is *M*-invariant. As *MK*/*UK* is cyclic, ξ is extendible to *MK* and therefore θ is extendible to *MK*. Then θ is extendible to *G* by Corollary 11.31 [5]. Conversely if θ is extendible to G, then the similar argument as above shows that ϕ is extendible to N. Next assume $C_{P/P'}(U) = Q/P'$ $\neq P/P'$. As U is normal in M, Q and QK are normal in N and G

respectively. Let H=QMK and $J=C_{\kappa}(Q)$. There is a unique $\psi \in \operatorname{Irr}(J)$ such that $(\theta_J, \psi) \not\equiv 0 \pmod{p}$ and $(\psi_L, \phi) \not\equiv 0 \pmod{p}$ by the result of Glauberman [4]. Considering a group $N_G(Q)/Q$ we have by induction that ϕ is extendible to N if and only if ψ is extendible to $N_G(Q)$. Also by induction we have that ψ is extendible to $N_H(Q)$ if and only if θ is extendible to H. As |G:H| and $|N_G(Q): N_H(Q)|$ are powers of p, we can conclude from Corollary 11.31 [5] that ϕ is extendible to N if and only if θ is extendible to G. Thus (*) is proved.

Our claim that $|\operatorname{Irr}(G|\theta_0)| = |\operatorname{Irr}(N|\phi_0)|$ follows from (*) and the result of Gallagher (see [5, Exercise 11.10]). Now we can prove the proposition. Let λ be a linear character of P. It suffices to show that $|\operatorname{Irr}(G|\theta_0\lambda)| = |\operatorname{Irr}(N|\phi_0\lambda)|$. We may assume λ is G-invariant and then the result follows from the above claim. Thus the proposition is proved.

3. In this section we shall prove our main theorem.

Theorem. Let G be a p-solvable group. Let B be a p-block of G with a defect group D and b a p-block of $N_{c}(D)$ with $b^{g}=B$. Then the number of irreducible characters in B of height 0 equals the number of those in b.

The result is proved by induction on the index $|G: O_{n'}(G)|$. Proof. First we consider the case that the subgroup $H = N_G(D)O_{n'}(G)$ is properly contained in *G*. Let $\theta \in Irr(O_{v'}(G))$ such that $Irr(B) \subseteq Irr(G | \theta)$. If θ is not *G*-invariant, then the result follows from the result of Fong ([3, Theorem (2B)]) and by induction. If θ is G-invariant, then by Theorem of Fong and Corollary in §2 we may assume that $O_{\nu'}(G)$ is contained in the center of G and D is a Sylow p-subgroup of G. Put $P = O_{p}(G)$. Since the kernel of every irreducible character of G and $N_{c}(D)$ contains P', we may assume that P is abelian. Let K be a pcomplement of $O_{v,v'}(G)$. If $N_G(K) = G$, then $G = K \times P$ and the result follows easily. So we may assume $N_G(K) \neq G$. Put Q = [P, K]. Then $G \triangleright Q \neq 1$ and $G = N_{G}(K)Q$, $Q \cap N_{G}(K) = 1$. Let $\lambda \in Irr(Q)$. From the method of Wigner (see [6, Proposition 2.5]) $Irr(G|\lambda)$ is obtained as follows. Put $N = N_G(K)$ and $N_1 = I_N(\lambda)$, the inertia subgroup of λ in N. Let λ be an extension of λ to N_1Q . Then $Irr(G|\lambda) = \{(\lambda \zeta)^{\alpha} | \zeta \in Irr(N_1)\}$ \subseteq Irr(N_1Q). Thus the theorem follows by applying the induction hypothesis to certain subgroups of N. Next we consider the case that $N_{g}(D)O_{y'}(G) = G$. Set $K = O_{y'}(G)$ and $L = K \cap N_{g}(D)$. There is $\theta \in Irr(K)$ such that $Irr(B) \subseteq Irr(G | \theta)$. The result of Glauberman [4] there is a unique $\phi \in Irr(L)$ such that $(\theta_L, \phi) \not\equiv 0 \pmod{p}$. It is clear that Irr(b) \subseteq Irr($N | \phi$). If θ is not *G*-invariant, then as in the above the result follows. If θ is G-invariant, then D is a Sylow p-subgroup and we have $Irr(B) = Irr(G | \theta)$ and $Irr(b) = Irr(N | \phi)$. Then the theorem follows from Proposition in §2. Thus the theorem is proved.

4. We remark that a similar argument as in \S 2-3 gives the following

Theorem. Let π be a set of primes. If G is a finite π -solvable group and S is a Hall π -subgroup of G, then the number of irreducible characters of G of degree not divisible by any prime in π equals the number of those of $N_a(S)$.

The above theorem for π' -solvable groups was proved by Wolf in [7]. Therefore combining our theorem with Wolf's, we see that the theorem also holds for π -separable groups.

References

- [1] J. L. Alperin: The main problem of block theory. Proc. of Conf. on Finite Groups, Academic Press, pp. 341-356 (1975).
- [2] R. Brauer: On blocks and sections in finite groups. I. Amer. J. Math., 89, 1115-1136 (1967).
- [3] P. Fong: On the characters of p-solvable groups. Trans. Amer. Math. Soc., 98, 263-284 (1961).
- [4] G. Glauberman: Correspondences of characters for relatively prime operator groups. Canad. J. Math., 20, 1465-1488 (1968).
- [5] I. M. Isaacs: Character Theory of Finite Groups. Academic Press (1976).
- [6] J. P. Serre: Représentation Linéaires des Groupes Finis. Herman S.A., Paris (1971).
- [7] T. R. Wolf: Characters of p'-degree in solvable groups. Pacific J. Math., 74, 267-271 (1978).