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73. Irreducible Characters of p-Solvable Groups

By Tetsuro OKUYAMA™ and Masayuki WAJIMA**)
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1979)

1. Let G be a finite group and » a prime number. Let B be a
p-block of G with a defect group D and b a p-block of Ny(D) with
b=B. It is conjectured in [1] that the number of irreducible complex
characters in B of height 0 equals the number of those in b. In this
note we shall show that this conjecture holds for p-solvable groups.
A complete proof will be given elsewhere.

2. For a finite group G let Ch(G) (resp. Irr(G)) denote the set of
all characters (resp. irreducible characters) of G. If K is a normal
subgroup of G and @ is an irreducible character of K, then we put
Irr(G|0)={y € Irr(G) | (xx, 6) 0} and denote the set of all sums of ele-
ments in Irr(G|6) by Ch(G|6). If B is a p-block of G, let Irr(B) be
the set of irreducible characters of G in B.

The following theorem by Fong plays an important role in this
note. We describe it using notation in a book of Isaacs [5, § 11].

Theorem (Fong [3]). Let G be a finite group, K a normal p’-sub-
group of G and 6 Ire(K). If 6 is G-invariant, then there are a finite
group é, its cyclic central subgroup K and 6 e Irr(K) such that the
following hold :

(1) there is an isomorphism r: G/ K= G / K,

2) for KCHCG let H denote the inverse image in G of =(H/K).
For such subgroup H, there is @ map o5 : Ch(H | 6)—Ch(H |0) such that
the following conditions hold for any x, € Ch(H/6):

(a) UH(X + \1/') = O'H(X) + UH(‘P)

(b) (X’ Y)= (0x(0), o5(Y))

©  as(¥)=(0(¥))°.

@) In (2),if bis a p-block of H such that Irr(b)ZIrr(H |6), then
aH(Irr(b))=Irr(l§) for some p-block b of H. Furthermore b and b have
isomorphic defect groups and o, gives o 1—1 height preserving cor-
respondence between Irr(d) and Irr(I;).

The following result gives a connection between the above cor-
respondence and Brauer’s block correspondence.

Corollary. In (8) in the above theorem assume that DC(D)CH
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where D is o defect group of b. Then b¢ and b¢ are defined and
beé=58.

Proof. Let D, be a defect group of b and put B=5b° From the
proof of Lemma (2C) [3], it follows that D, is a Sylow p-subgroup of

DK. So DC,D)CH implies D,Co(D)<H as K is of p-order. Thus
b% is defined. Now it suffices to show ¢ is in fact B. Let e Irr(db)
and {°=>a,x. For an integer n we denote the p-part of » by n,.

Then by the result of Brauer (12, (3A)]) we have (£%(1),= ( 5 a,x(1)>,,.
1EB

From the properties of ¢, in Fong’s theorem, we have ¢,(0)¢= >oa,04(y)

and @, ©°W),=( 3 a0D) .

Brauer it follows that 5¢=B and the theorem is proved.

Proposition. Let G be a finite group with a Sylow p-subgroup P
and a normal p'-subgroup K such that G=KN,(P). Let 0¢ Irr(K) be
G-invariont. Put N=N,P) and L=NNK. Then there is a unique
¢ € Irr(L) such that (6;, )0 (mod p) and the number of ye Irr(G|6)
such that y(1)%0 (mod p) equals the number of € Irr(N|¢) such that
¥(1)#0 (mod p).

Proof. The existence and the uniqueness of ¢ follow from the
result of Glauberman [4]. From Corollary 6.28 [5] there is a unique
extension 6, € Irr(PK) of 6 such that p does not divide |det (4,)|. Also
there is a unique extension ¢,e Irr(PL) such that p does not divide
|det (#)|. It is easily proved that if 4 is extendible to G then so is 6,
and if ¢ is extendible to N then so is ¢,. First we claim that
|Irr(G|6,)|= Irr(N | ¢,)|. This follows from

(*) Assume G/PK is abelian. Then 6 is extendible to G if and
only if ¢ is extendible to N.

We shall prove (x) by induction on the order of G. Let M be a p-
complement in N. As M/L is abelian, there is a subgroup U with
LCUCM such that M/U is cyclic and C;,/(U)#1. Assume Cp;p(U)
=P/P’. Then C,(U)=P and every irreducible character in Irr(UK |6)
or Irr(U | ¢) is P-invariant. Furthermore there is a 1—1 correspond-
ence between ¢ € Irr(UK | 6) and 5 € Irr(U | ¢) such that (£,, )0 (mod p)
by Theorem 13.1 and 13.29 [5]. If ¢ is extendible to N, so is to M.
Let ¢ be an extension of ¢ to M and let y=d¢,. Then |Irr(UK|6)|
=|Irr(U|¢)|=|U/L|=|UK/K|. So 6 is extendible to UK. If
& e Irr(UK | 6) such that (¢, 7)%0 (mod p), then & is MK-invariant since
n is M-invariant. As MK/UK is cyclic, & is extendible to MK and
therefore @ is extendible to MK. Then 6 is extendible to G by Corollary
11.31 [5]. Conversely if 6 is extendible to G, then the similar argument
as above shows that ¢ is extendible to N. Next assume Cppn(U)=Q /P’
+#P/P’. As U is normal in M,Q and QK are normal in N and G

Thus again by the result of
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respectively. Let H=QMK and J=C(Q). There is a unique
€ Irr(J) such that (6,,4)=0 (mod p) and (Y, )0 (mod p) by the
result of Glauberman [4]. Considering a group N,(Q)/Q we have by
induction that ¢ is extendible to N if and only if ¢ is extendible to
N4Q). Also by induction we have that + is extendible to N (@) if and
only if 6 is extendible to H. As|G: H|and |[Ng(Q): N4(Q)| are powers
of p, we can conclude from Corollary 11.31 [5] that ¢ is extendible to
N if and only if 4 is extendible to G. Thus () is proved.

Our claim that |Irr(G|6,)|=|Irr(N|¢,)| follows from (x) and the
result of Gallagher (see [5, Exercise 11.10]). Now we can prove the
proposition. Let 4 be a linear character of P. It suffices to show that
|Irr(G |6, |=|Irr(N | ¢A)|. We may assume 2 is G-invariant and then
the result follows from the above claim. Thus the proposition is
proved.

3. In this section we shall prove our main theorem.

Theorem. Let G be a p-solvable group. Let B be a p-block of
G with a defect group D and b a p-block of N4D) with b=B. Then
the number of irreducible characters in B of height 0 equals the number
of those in b.

Proof. The resultis proved by induction on the index |G : 0,.(G)|.
First we consider the case that the subgroup H=N/D)O,(G) is
properly contained in G. Let 6 € Irr(0,.(G)) such that Irr(B)CIrr(G|6).
If ¢ is not G-invariant, then the result follows from the result of Fong
([3, Theorem (2B)]) and by induction. If ¢ is G-invariant, then by
Theorem of Fong and Corollary in §2 we may assume that 0,.(G) is
contained in the center of G and D is a Sylow p-subgroup of G. Put
P=0,(G). Since the kernel of every irreducible character of G and
N (D) contains P’, we may assume that P is abelian. Let K be a »-
complement of O, ,(G). If N (K)=G, then G=KX P and the result
follows easily. So we may assume N (K)#G. Put Q=[P,K]. Then
GP>QR#1 and G=N,(K)Q, QNN (K)=1. Let 1eIlrr(Q). From the
method of Wigner (see [6, Proposition 2.5]) Irr(G|2) is obtained as
follows. Put N=NXK) and N,=1,(2), the inertia subgroup of 1 in N.
Let 1 be an extension of 2 to N,Q. Then Irr(G|)={(i)%|¢ e Irr(N,)
CIrr(N,Q)}. Thus the theorem follows by applying the induction hypo-
thesis to certain subgroups of N. Next we consider the case that
N/(D)O,(G)=G. Set K=0,(G)and L=KNNy D). Thereis 6 ¢ Irr(K)
such that Irr(B)CIrr(G|6). The result of Glauberman [4] there is a
unique ¢ € Irr(L) such that (4., $)5£0 (mod p). It is clear that Irr(d)
CIrr(N|¢). If 6 is not G-invariant, then as in the above the result
follows. If ¢ is G-invariant, then D is a Sylow p-subgroup and we
have Irr(B)=Irr(G|6) and Irr(b)=Irr(N|¢$). Then the theorem follows
from Proposition in § 2. Thus the theorem is proved.
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4. We remark that a similar argument as in §§2-3 gives the
following

Theorem. Let = be a set of primes. If G is a finite n-solvable
group and S is a Hall z-subgroup of G, then the number of irreducible
characters of G of degree not divisible by any prime in = equals the
number of those of N4(S).

The above theorem for n’-solvable groups was proved by Wolf in
[7]. Therefore combining our theorem with Wolf’s, we see that the
theorem also holds for z-separable groups.
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