70. On an Explicit Construction of Siegel Modular Forms of Genus 2

By Hiroyuki Yoshida
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1979)

1. In this note, we shall present an explicit correspondence from a pair of elliptic modular forms to a Siegel modular form of genus 2, which "preserves" Euler products, by means of theta series.

We denote by \boldsymbol{H} the Hamilton quaternion algebra. For a ring A, let A^{\times}denote the group of invertible elements of A. For a square matrix $M, \sigma(M)$ denotes the trace of M. For modular forms and Euler products associated with them, we shall use notation as is given in A. N. Andrianov [1] and G. Shimura [4].
2. Let D be a definite quaternion algebra over \boldsymbol{Q} whose discriminant is d^{2} and R be a maximal order of D. Let D_{A}^{\times}denote the adelization of D^{\times}. For a prime l, we put $D_{l}=D \otimes_{Q} \boldsymbol{Q}_{l}$ and $R_{l}=R \otimes_{Z} Z_{l}$ and let ι_{l} denote the canonical injection of D_{\imath}^{\times}into D_{A}^{\times}. Set $K=\prod_{\imath} R_{\imath}^{\times} \times H^{\times}$ and let $D_{A}^{\times}=\bigcup_{i=1}^{H} D^{\times} y_{i} K$ be a double coset decomposition of D_{A}^{x} such that the reduced norm of $y_{i}(1 \leq i \leq H)$ is $1 \in \boldsymbol{Q}_{A}^{\times}$. For $1 \leq i, j \leq H$, define a lattice $L_{i j}$ of D by $L_{i j}=D \cap y_{i}\left(\prod_{l} R_{\imath}\right) y_{j}^{-1}$ and put $R_{i}=L_{i i}, e_{i}=\left|R_{i}^{\times}\right|$. Let $N, T r$ and $*$ stand for the reduced norm, the reduced trace and the main involution of D respectively. Let H_{n} be the Siegel upper half space of genus n. Set

$$
\begin{gather*}
\vartheta_{i j}(z)=\sum_{x \in L_{i j}} \exp (2 \pi \sqrt{-1} N(x) z), \quad z \in H_{1}, \tag{1}\\
\widetilde{\vartheta}_{i j}(z)=\sum_{(x, y) \in L_{i j} \oplus L_{i j}} \exp \left(2 \pi \sqrt{-1} \sigma\left(\left(\begin{array}{lc}
N(x) & \operatorname{Tr}\left(x y^{*}\right) / 2 \\
\operatorname{Tr}\left(x y^{*}\right) / 2 & N(y)
\end{array}\right)\right),\right. \tag{2}
\end{gather*}
$$

$$
z \in H_{2} .
$$

Then $\vartheta_{i j}$ and $\widetilde{\vartheta}_{i j}$ are Siegel modular forms of genera 1 and 2 respectively. The weight of them is 2 and the level of them is d. Let $S(R)$ denote the space of complex valued functions φ on D_{A}^{\times}which satisfy that $\varphi(\gamma g k)=\varphi(g)$ for any $\gamma \in D^{\times}, k \in K, g \in D_{A}^{\times}$. For a prime $l \chi d$, fixing a splitting $D_{l} \leftrightarrows M_{2}\left(\boldsymbol{Q}_{l}\right)$ such that R_{l} is mapped onto $M_{2}\left(\boldsymbol{Z}_{l}\right)$, we put

$$
\left(T^{\prime}(l) \varphi\right)(g)=\sum_{v=0}^{l-1} \varphi\left(g \cdot \iota_{l}\left(\begin{array}{ll}
l & v \\
0 & 1
\end{array}\right)\right)+\varphi\left(g \cdot \iota_{l}\left(\begin{array}{ll}
1 & 0 \\
0 & l
\end{array}\right)\right) .
$$

For $\varphi, \varphi_{1}, \varphi_{2} \in S(R)$ and $1 \leq i \leq H$, set

$$
\begin{equation*}
f_{i}(\varphi)=\sum_{j=1}^{H}\left(\varphi\left(y_{j}\right) / e_{j}\right) \vartheta_{i j} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
F\left(\varphi_{1}, \varphi_{2}\right)=\sum_{i=1}^{H} \sum_{j=1}^{H}\left(\varphi_{1}\left(y_{i}\right) \varphi_{2}\left(y_{j}\right) / e_{i} e_{j}\right) \tilde{\vartheta}_{i j} . \tag{4}
\end{equation*}
$$

Theorem 1. Let $\varphi \in S(R)$ and l be a prime such that $l \nmid d$. If $T^{\prime}(l) \varphi=\lambda \varphi$, we have $T(l) f_{i}(\varphi)=\lambda f_{i}(\varphi)$ for any $i, 1 \leq i \leq H$.

Theorem 2. Let $\varphi_{1}, \varphi_{2} \in S(R)$ and l be an odd prime such that $l \nmid d$. If $T^{\prime}(l) \varphi_{i}=\lambda_{i} \varphi_{i}, 1 \leq i \leq 2$, then we have

$$
\begin{aligned}
T(l) F\left(\varphi_{1}, \varphi_{2}\right) & =\left(\lambda_{1}+\lambda_{2}\right) F\left(\varphi_{1}, \varphi_{2}\right), \\
T\left(l^{2}\right) F\left(\varphi_{1}, \varphi_{2}\right) & =\left(\lambda_{1}^{2}+\lambda_{1} \lambda_{2}+\lambda_{2}^{2}-2 l-1\right) F\left(\varphi_{1}, \varphi_{2}\right) .
\end{aligned}
$$

A detailed proof of Theorem 2 is given in [5].
Remark 1. Suppose that φ, φ_{1} and φ_{2} are common eigenfunctions of $T^{\prime}(l)$ for every $l \nmid d$. Then $f_{i}(\varphi)$ is a cusp form if φ is not a constant function. If d is a prime, $F\left(\varphi_{1}, \varphi_{2}\right)$ is a cusp form if φ_{2} is not a constant multiple of φ_{1}.
3. Hereafter, we shall assume that d is equal to a prime p and discuss in what condition F does not vanish. Every identity between Euler products shall mean the equality up to the 2 and p-factors. Let \approx be a prime element of R_{p} and put $S^{+}(R)=\left\{\varphi \in S(R) \mid \varphi\left(g \iota_{p}(\varpi)\right)=\varphi(g)\right.$, $\left.\forall g \in D_{A}^{\times}\right\}, S^{-}(R)=\left\{\varphi \in S(R) \mid \varphi\left(g \iota_{p}(\widetilde{\sigma})\right)=-\varphi(g), \forall g \in D_{A}^{\times}\right\}$. We can show easily that if $\varphi \in S^{ \pm}(R)$, then $f_{i}(\varphi) \in G_{2}^{\mp}\left(\Gamma_{0}(p)\right)$. Let $\varphi_{1}, \cdots, \varphi_{T}$ (resp. $\varphi_{T+1}, \cdots, \varphi_{H}$) be a basis of $S^{+}(R)$ (resp. $S^{-}(R)$) consisting of common eigenfunctions of $T^{\prime}(l), l \neq p$. Here T is the type number of D. Note that the integral quadratic form $x \rightarrow N(x)$ on $L_{i j}$ represents 1 if and only if $i=j$. Hence we have $F\left(\varphi_{i}, \varphi_{j}\right) \neq 0$, which is an Eisenstein series whose Euler product is $L\left(s, \varphi_{i}\right)^{2}$. If $\varphi_{i} \in S^{+}(R)$ and $\varphi_{j} \in S^{-}(R)$, we can show $F\left(\varphi_{i}, \varphi_{j}\right)=0$. However if $i, j \leq T$ or $i, j>T$, we can expect the nonvanishing of $F\left(\varphi_{i}, \varphi_{j}\right)$. At present, we can prove the followings.

Let K be an imaginary quadratic field of class number 1 such that $\left(\frac{K}{p}\right)=-1$. Then the maximal order \subseteq of K is embedded in a maximal order R_{i} of D.

Theorem 3. Let the notation be as above. If $\varphi_{t}\left(y_{i}\right) \neq 0, \varphi_{u}\left(y_{i}\right)$ $\neq 0$, we have $F\left(\varphi_{t}, \varphi_{u}\right) \neq 0$.

Let K be an imaginary quadratic field of class number 2 such that $\left(\frac{K}{p}\right)=-1$. The maximal order \mathfrak{O} of K is embedded in some R_{i}. Let $j\left(\mathfrak{H}_{1}\right), j\left(\mathfrak{H}_{2}\right)$ be the singular invariants for two representatives $\mathfrak{A}_{1}, \mathfrak{N}_{2}$ of ideal classes of K. Let F be the real quadratic field generated over \boldsymbol{Q} by $j\left(\mathfrak{H}_{1}\right)$.

Theorem 4. Let the notation be as above. We assume that $\left(\frac{F}{p}\right)=-1$ and that p does not divide $j\left(\mathfrak{N}_{1}\right)-j\left(\mathfrak{H}_{2}\right)$. For φ_{t}, φ_{u} such that $t, u \leq T$ or $t, u>T$, we have $F\left(\varphi_{t}, \varphi_{u}\right) \neq 0$ if $\varphi_{t}\left(y_{i}\right) \neq 0$ and $\varphi_{u}\left(y_{i}\right) \neq 0$.

Proof. We shall prove Theorem 4. The proof of Theorem 3 is simpler. Since $\left(\frac{\boldsymbol{F}}{p}\right)=-1$ and p does not divide $j\left(\mathfrak{A}_{1}\right)-j\left(\mathfrak{A}_{2}\right)$, by virtue of Deuring's results on supersingular moduli and a theorem of Chevalley-Hasse-Noether, \mathfrak{D} is embeddable in exactly two maximal orders R_{i} and R_{j} which have non-principal two sided ideals. Moreover R_{i} and R_{j} are conjugate. We take $s, v \in \boldsymbol{Z}$ so that the roots of $X^{2}-s X+v=0$ generate \mathfrak{D} over Z. Let $\sum a(N) \exp (2 \pi \sqrt{-1} \sigma(N z))$ be the Fourier expansion of $F\left(\varphi_{t}, \varphi_{u}\right)$. If $t, u \leq T$ or $t, u>T$, we see easily that $a\left(\left(\begin{array}{cc}1 & s / 2 \\ s / 2 & v\end{array}\right)\right)=\varphi_{t}\left(y_{i}\right) \varphi_{u}\left(y_{i}\right) \cdot$ (some positive integer). Therefore $F\left(\varphi_{t}, \varphi_{u}\right) \neq 0$ if $\varphi_{t}\left(y_{i}\right) \neq 0$ and $\varphi_{u}\left(y_{i}\right) \neq 0$.

Remark 2. For $\tau \in \operatorname{Aut}(C)$ and $\varphi \in S^{ \pm}(R)$, define $\varphi^{\tau} \in S^{ \pm}(R)$ by $\varphi^{\tau}(g)=(\varphi(g))^{\tau}, g \in D_{A}^{\times}$. Then it is clear that $f_{i}\left(\varphi^{\tau}\right)=\left(f_{i}(\varphi)\right)^{\tau}$. Using this fact and finding several suitable imaginary quadratic fields of class number 1 or 2 which satisfy the conditions of Theorem 3 or 4 , we obtain the followings. For every $f \in G_{2}^{-}\left(\Gamma_{0}(p)\right)$ (resp. $f \in S_{2}^{+}\left(\Gamma_{0}(p)\right)$ and $\tau \in \operatorname{Aut}(C)$, where f is a common eigenfunction of Hecke operators, there exist non-zero Siegel modular forms F_{1} and F_{2} (resp. F) such that $L\left(s, F_{1}\right)=L(s, f) L\left(s, f^{\tau}\right), L\left(s, F_{2}\right)=\zeta(s) \zeta(s-1) L(s, f)(\operatorname{resp} . L(s, F)$ $=L(s, f) L\left(s, f^{\tau}\right)$), if $p \leq 103$. Here ζ denotes the Riemann zeta function. If $p=31$ for example, we can obtain a Siegel modular form whose Euler product is equal to the one dimensional part of the HasseWeil zeta function of certain simple 2-dimensional abelian variety (cf. [4, Theorem 7.15]).

Remark 3. Put $I_{i}=\left|\left\{t \mid \varphi_{t}\left(y_{i}\right) \neq 0\right\}\right|$. We can show $\operatorname{dim}_{C}\left\langle\vartheta_{i j} \mid 1 \leq j \leq H\right\rangle$ $=I_{i}$ for every $1 \leq i \leq H$. Hence $I_{i} \geq 2$ if $H \geq 2$ for every i. A. Pizer [3] found for many p that $I_{i}=H$ if R_{i} has a non-principal two sided ideals and that $I_{i}=T$ if R_{i} does not. The importance of this conjecture is now obvious.
4. For the higher weight case, we can also construct (by a similar formula to (4)) a Siegel modular form F (of genus 2) of weight k from a pair (f_{1}, f_{2}) of elliptic modular forms such that the Euler product $L(s, F)$ is equal to $L\left(s-k+2, f_{1}\right) L\left(s, f_{2}\right)$, where $f_{1} \in G_{2}\left(\Gamma_{0}(p)\right)$, $f_{2} \in S_{2 k-2}^{\mathrm{new}}\left(\Gamma_{0}(p)\right)$ and k is even. In our construction, some explicit choices of spherical functions of nice behavior are crucial. Here we content ourselves by giving an example for the case $p=3, k=4$. Set

$$
S=\left(\begin{array}{cccc}
1 & 0 & 3 / 2 & 0 \\
0 & 1 & 0 & 3 / 2 \\
3 / 2 & 0 & 3 & 0 \\
0 & 3 / 2 & 0 & 3
\end{array}\right)
$$

and

$$
\begin{aligned}
& \Theta_{1}(z)=\sum_{(x, y) \in Z^{\oplus} \oplus Z^{4}} P_{1}(x, y)^{2} \exp (2 \pi \sqrt{-1} \sigma(Q(x, y) z)), \\
& \Theta_{2}(z)=\sum_{(x, y) \in Z^{\oplus} \oplus Z^{4}} P_{2}(x, y)^{2} \exp (2 \pi \sqrt{-1} \sigma(Q(x, y) z)), \quad z \in H_{2} .
\end{aligned}
$$

Here we put $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \quad y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \quad P_{1}(x, y)=\left(x_{1} y_{2}-y_{1} x_{2}\right.$ $\left.+x_{1} y_{4}-y_{1} x_{4}-x_{2} y_{3}+y_{2} x_{3}\right), \quad P_{2}(x, y)=\left(x_{1} y_{3}-y_{1} x_{3}+x_{2} y_{4}-y_{2} x_{4}\right)$ and $Q(x, y)$ $=\left(\begin{array}{ll}{ }^{t} x S x & { }^{t} x S y \\ { }^{t} x S y & { }^{t} y S y\end{array}\right)$. Then we can prove, for the cusp form $F=\Theta_{1}-\Theta_{2}$, that $L(s, F)=\zeta(s-2) \zeta(s-3) L(s, f)$ holds, where f is the primitive cusp form of $S_{6}\left(\Gamma_{0}(3)\right.$). Thus our results seem to "explain" some conjectural examples given in N. Kurokawa [2]. Finally we note that it is also possible to obtain similar results for Hilbert modular forms over real quadratic fields of weight $(2,2 k-2)$.

References

[1] A. N. Andrianov: Dirichlet series with Euler products in the theory of Siegel modular forms of genus 2. Trudy Math. Inst. Steklov, 112, 73-94 (1971).
[2] N. Kurokawa: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math., 49, 149-165 (1978).
[3] A. Pizer: A note on a conjecture of Hecke (preprint).
[4] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami-Shoten and Princeton University Press (1971).
[5] H. Yoshida: Siegel's modular forms and the arithmetic of quadratic forms (preprint).

