70. On an Explicit Construction of Siegel Modular Forms of Genus 2

By Hiroyuki Yoshida

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1979)

1. In this note, we shall present an explicit correspondence from a pair of elliptic modular forms to a Siegel modular form of genus 2, which "preserves" Euler products, by means of theta series.

We denote by H the Hamilton quaternion algebra. For a ring A, let A^{\times} denote the group of invertible elements of A. For a square matrix $M, \sigma(M)$ denotes the trace of M. For modular forms and Euler products associated with them, we shall use notation as is given in A. N. Andrianov [1] and G. Shimura [4].

2. Let *D* be a definite quaternion algebra over Q whose discriminant is d^2 and *R* be a maximal order of *D*. Let D_A^{\times} denote the adelization of D^{\times} . For a prime *l*, we put $D_i = D \otimes_Q Q_i$ and $R_i = R \otimes_Z Z_i$ and let ι_i denote the canonical injection of D_i^{\times} into D_A^{\times} . Set $K = \prod_i R_i^{\times} \times H^{\times}$ and let $D_A^{\times} = \bigcup_{i=1}^{H} D^{\times} y_i K$ be a double coset decomposition of D_A^{\times} such that the reduced norm of y_i $(1 \le i \le H)$ is $1 \in Q_A^{\times}$. For $1 \le i, j \le H$, define a lattice L_{ij} of *D* by $L_{ij} = D \cap y_i (\prod_i R_i) y_j^{-1}$ and put $R_i = L_{ii}, e_i = |R_i^{\times}|$. Let *N*, *Tr* and * stand for the reduced norm, the reduced trace and the main involution of *D* respectively. Let H_n be the Siegel upper half space of genus *n*. Set

(1)
$$\vartheta_{ij}(z) = \sum_{x \in L_{ij}} \exp(2\pi \sqrt{-1}N(x)z), \quad z \in H_1,$$

$$(2) \qquad \tilde{\vartheta}_{ij}(z) = \sum_{(x,y) \in L_{ij} \oplus L_{ij}} \exp\left(2\pi\sqrt{-1}\sigma\left(\begin{pmatrix}N(x) & Tr(xy^*)/2\\Tr(xy^*)/2 & N(y)\end{pmatrix}z\right)\right), \qquad z \in H_2.$$

Then ϑ_{ij} and $\tilde{\vartheta}_{ij}$ are Siegel modular forms of genera 1 and 2 respectively. The weight of them is 2 and the level of them is d. Let S(R) denote the space of complex valued functions φ on D_A^{\times} which satisfy that $\varphi(\gamma gk) = \varphi(g)$ for any $\gamma \in D^{\times}$, $k \in K$, $g \in D_A^{\times}$. For a prime $l \nmid d$, fixing a splitting $D_i \cong M_2(\mathbf{Q}_l)$ such that R_i is mapped onto $M_2(\mathbf{Z}_l)$, we put

$$(T'(l)\varphi)(g) = \sum_{v=0}^{l-1} \varphi \Big(g \cdot \iota_l inom{l}{0} \ 1 \Big) \Big) + \varphi \Big(g \cdot \iota_l inom{1}{0} \ l \Big) \Big).$$

For $\varphi, \varphi_1, \varphi_2 \in S(R)$ and $1 \le i \le H$, set (3) $f_i(\varphi) = \sum_{i=1}^H (\varphi(y_i)/e_i) \vartheta_{ij},$ H. YOSHIDA

(4)
$$F(\varphi_1,\varphi_2) = \sum_{i=1}^{H} \sum_{j=1}^{H} (\varphi_1(y_i)\varphi_2(y_j)/e_ie_j)\tilde{\vartheta}_{ij}.$$

Theorem 1. Let $\varphi \in S(R)$ and l be a prime such that $l \nmid d$. If $T'(l)\varphi = \lambda \varphi$, we have $T(l)f_i(\varphi) = \lambda f_i(\varphi)$ for any $i, 1 \leq i \leq H$.

Theorem 2. Let $\varphi_1, \varphi_2 \in S(R)$ and l be an odd prime such that $l \nmid d$. If $T'(l)\varphi_i = \lambda_i \varphi_i$, $1 \leq i \leq 2$, then we have

$$T(l)F(\varphi_1,\varphi_2) = (\lambda_1 + \lambda_2)F(\varphi_1,\varphi_2),$$

$$T(l^2)F(\varphi_1,\varphi_2) = (\lambda_1^2 + \lambda_1\lambda_2 + \lambda_2^2 - 2l - 1)F(\varphi_1,\varphi_2).$$

A detailed proof of Theorem 2 is given in [5].

Remark 1. Suppose that φ , φ_1 and φ_2 are common eigenfunctions of T'(l) for every $l \nmid d$. Then $f_i(\varphi)$ is a cusp form if φ is not a constant function. If d is a prime, $F(\varphi_1, \varphi_2)$ is a cusp form if φ_2 is not a constant multiple of φ_1 .

3. Hereafter, we shall assume that d is equal to a prime p and discuss in what condition F does not vanish. Every identity between Euler products shall mean the equality up to the 2 and p-factors. Let ϖ be a prime element of R_p and put $S^+(R) = \{\varphi \in S(R) | \varphi(g\iota_p(\varpi)) = \varphi(g), \forall g \in D_A^{\times}\}, S^-(R) = \{\varphi \in S(R) | \varphi(g\iota_p(\varpi)) = -\varphi(g), \forall g \in D_A^{\times}\}$. We can show easily that if $\varphi \in S^{\pm}(R)$, then $f_i(\varphi) \in G_2^{\pm}(\Gamma_0(p))$. Let $\varphi_1, \dots, \varphi_T$ (resp. $\varphi_{T+1}, \dots, \varphi_H$) be a basis of $S^+(R)$ (resp. $S^-(R)$) consisting of common eigenfunctions of $T'(l), l \neq p$. Here T is the type number of D. Note that the integral quadratic form $x \rightarrow N(x)$ on L_{ij} represents 1 if and only if i=j. Hence we have $F(\varphi_i, \varphi_j) \neq 0$, which is an Eisenstein series whose Euler product is $L(s, \varphi_i)^2$. If $\varphi_i \in S^+(R)$ and $\varphi_j \in S^-(R)$, we can show $F(\varphi_i, \varphi_j) = 0$. However if $i, j \leq T$ or i, j > T, we can expect the nonvanishing of $F(\varphi_i, \varphi_j)$. At present, we can prove the followings.

Let K be an imaginary quadratic field of class number 1 such that $\left(\frac{K}{p}\right) = -1$. Then the maximal order Ω of K is embedded in a maximal order R_i of D.

Theorem 3. Let the notation be as above. If $\varphi_i(y_i) \neq 0$, $\varphi_u(y_i) \neq 0$, we have $F(\varphi_i, \varphi_u) \neq 0$.

Let K be an imaginary quadratic field of class number 2 such that $\left(\frac{K}{p}\right) = -1$. The maximal order \mathfrak{O} of K is embedded in some R_i . Let $j(\mathfrak{A}_1), j(\mathfrak{A}_2)$ be the singular invariants for two representatives $\mathfrak{A}_1, \mathfrak{A}_2$ of ideal classes of K. Let F be the real quadratic field generated over Q by $j(\mathfrak{A}_1)$.

Theorem 4. Let the notation be as above. We assume that $\left(\frac{F}{p}\right) = -1$ and that p does not divide $j(\mathfrak{A}_1) - j(\mathfrak{A}_2)$. For φ_i, φ_u such that $t, u \leq T$ or t, u > T, we have $F(\varphi_i, \varphi_u) \neq 0$ if $\varphi_i(y_i) \neq 0$ and $\varphi_u(y_i) \neq 0$.

298

No. 8]

Proof. We shall prove Theorem 4. The proof of Theorem 3 is simpler. Since $\left(\frac{F}{p}\right) = -1$ and p does not divide $j(\mathfrak{A}_1) - j(\mathfrak{A}_2)$, by virtue of Deuring's results on supersingular moduli and a theorem of Chevalley-Hasse-Noether, \mathfrak{O} is embeddable in exactly two maximal orders R_i and R_j which have non-principal two sided ideals. Moreover R_i and R_j are conjugate. We take $s, v \in \mathbb{Z}$ so that the roots of

the Fourier expansion of $F(\varphi_i, \varphi_u)$. If $t, u \leq T$ or t, u > T, we see easily that $a\left(\begin{pmatrix} 1 & s/2 \\ s/2 & v \end{pmatrix}\right) = \varphi_t(y_i)\varphi_u(y_i) \cdot (\text{some positive integer})$. Therefore $F(\varphi_i, \varphi_u) \neq 0$ if $\varphi_t(y_i) \neq 0$ and $\varphi_u(y_i) \neq 0$.

 $X^2-sX+v=0$ generate \mathfrak{O} over Z. Let $\sum a(N) \exp(2\pi \sqrt{-1}\sigma(Nz))$ be

Remark 2. For $\tau \in \operatorname{Aut}(C)$ and $\varphi \in S^{\pm}(R)$, define $\varphi^{\tau} \in S^{\pm}(R)$ by $\varphi^{\tau}(g) = (\varphi(g))^{\tau}$, $g \in D_{A}^{\times}$. Then it is clear that $f_{i}(\varphi^{\tau}) = (f_{i}(\varphi))^{\tau}$. Using this fact and finding several suitable imaginary quadratic fields of class number 1 or 2 which satisfy the conditions of Theorem 3 or 4, we obtain the followings. For every $f \in G_{2}^{-}(\Gamma_{0}(p))$ (resp. $f \in S_{2}^{+}(\Gamma_{0}(p))$ and $\tau \in \operatorname{Aut}(C)$, where f is a common eigenfunction of Hecke operators, there exist non-zero Siegel modular forms F_{1} and F_{2} (resp. F) such that $L(s, F_{1}) = L(s, f)L(s, f^{\tau})$, $L(s, F_{2}) = \zeta(s)\zeta(s-1)L(s, f)$ (resp. $L(s, F) = L(s, f)L(s, f^{\tau})$), if $p \leq 103$. Here ζ denotes the Riemann zeta function. If p=31 for example, we can obtain a Siegel modular form whose Euler product is equal to the one dimensional part of the Hasse-Weil zeta function of certain simple 2-dimensional abelian variety (cf. [4, Theorem 7.15]).

Remark 3. Put $I_i = |\{t | \varphi_i(y_i) \neq 0\}|$. We can show $\dim_c \langle \vartheta_{ij} | 1 \leq j \leq H \rangle$ = I_i for every $1 \leq i \leq H$. Hence $I_i \geq 2$ if $H \geq 2$ for every *i*. A. Pizer [3] found for many *p* that $I_i = H$ if R_i has a non-principal two sided ideals and that $I_i = T$ if R_i does not. The importance of this conjecture is now obvious.

4. For the higher weight case, we can also construct (by a similar formula to (4)) a Siegel modular form F (of genus 2) of weight k from a pair (f_1, f_2) of elliptic modular forms such that the Euler product L(s, F) is equal to $L(s-k+2, f_1)L(s, f_2)$, where $f_1 \in G_2(\Gamma_0(p))$, $f_2 \in S_{2k-2}^{\text{new}}(\Gamma_0(p))$ and k is even. In our construction, some explicit choices of spherical functions of nice behavior are crucial. Here we content ourselves by giving an example for the case p=3, k=4. Set

$$S = \begin{pmatrix} 1 & 0 & 3/2 & 0 \\ 0 & 1 & 0 & 3/2 \\ 3/2 & 0 & 3 & 0 \\ 0 & 3/2 & 0 & 3 \end{pmatrix}$$

and

H. YOSHIDA

$$egin{aligned} & \Theta_1(z) = \sum\limits_{(x,y)\in \mathbf{Z}^4\oplus \mathbf{Z}^4} P_1(x,y)^2 \exp\left(2\pi\sqrt{-1}\sigma(Q(x,y)z)
ight), \ & \Theta_2(z) = \sum\limits_{(x,y)\in \mathbf{Z}^4\oplus \mathbf{Z}^4} P_2(x,y)^2 \exp\left(2\pi\sqrt{-1}\sigma(Q(x,y)z)
ight), \qquad z\in H_2. \end{aligned}$$

Here we put $x = (x_1, x_2, x_3, x_4)$, $y = (y_1, y_2, y_3, y_4)$, $P_1(x, y) = (x_1y_2 - y_1x_2 + x_1y_4 - y_1x_4 - x_2y_3 + y_2x_3)$, $P_2(x, y) = (x_1y_3 - y_1x_3 + x_2y_4 - y_2x_4)$ and $Q(x, y) = \begin{pmatrix} {}^txSx & {}^txSy \\ {}^txSy & {}^tySy \end{pmatrix}$. Then we can prove, for the cusp form $F = \Theta_1 - \Theta_2$, that $L(s, F) = \zeta(s-2)\zeta(s-3)L(s, f)$ holds, where f is the primitive cusp form of $S_6(\Gamma_0(3))$. Thus our results seem to "explain" some conjectural examples given in N. Kurokawa [2]. Finally we note that it is also possible to obtain similar results for Hilbert modular forms over real quadratic fields of weight (2, 2k-2).

References

- [1] A. N. Andrianov: Dirichlet series with Euler products in the theory of Siegel modular forms of genus 2. Trudy Math. Inst. Steklov, 112, 73-94 (1971).
- [2] N. Kurokawa: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math., 49, 149-165 (1978).
- [3] A. Pizer: A note on a conjecture of Hecke (preprint).
- [4] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami-Shoten and Princeton University Press (1971).
- [5] H. Yoshida: Siegel's modular forms and the arithmetic of quadratic forms (preprint).