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63. Studies on Holonomic Quantum Fields. XV

Double Scaling Limit of One Dimensional XY Model

By Michio JIMBO, Tetsuji MIWA, and Mikio SATO
Research Institute for Mathematical Sciences, Kyoto University

(Communicated by K.6saku YOSIDA, M.J.A., Oct. 12, 1979)

The aim of this article is to show that the double scaling limit ([6]
[7] [8]) of the one dimensional XY chain can be handled in the frame-
work of monodromy preserving deformation theory (cf. [1] [2] [3]).

We wish to express our gratitude to Profs. B. M. McCoy and C. A.
Tracy, who have urged us to study the topics of our present notes XV,
XVI from deformation theoretical viewpoint. In particular we are
grateful to Prof. McCoy for handing us related references, including
the thesis of Vaidya [8].

1o The one-dimensional spin 1__ XY model is described by the
2

Hamiltonian

( 1 ) H I y y

4 --0 ((1+ r)aa+l+(1--r)a,a,+l +2haS)

a I @a@ I (a=.x, y, z)

where a=(1 1), a=(i --i), a=(1 _1)-
In the sequel we shall be concerned with the double scaling limit

o the model (1), defined as ollows ([6]):
( 2 ) m,n =i-h0,0

keeping g=y/O, a=me, t= fixed.
2

The result is quite similar to the scaling limit of the Ising model,
except that the characteristic dispersion relation (p)=+m for
the latter is now replaced by ([6])
( 3 w(p) V(p+p)(p+*)
where =g+g-I (gl), =g+ii-g (0gl), *=-.. Denote
by q*(p), q(p) the creation-annihilation operators o ree ermion such
that [q*(p), q(p’)]+=2u(p-p’), and set
( 4 ) (p, t)=*(-p)e() (p)e-()

(5) (’)(a, t)= (P, t)e"Ppn= y ()(a, t)

(n=0, 1,2, ...)
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( 6 ) 4(p) (p, 0), +()(a, t)= +(,)(a,
Then we find that, in the notation of [4],
( 7 ) a-- /g/*(a, t) +0()

=Zg’*p(-)(a, t) + 0()
( 8 ) (a, t)= e’:

<(a, t)= ,’(a, t)<(a, t)e
with

2u 2u Rt-(p, p’) R+ (p, p’)/ k+(p’) /

R (p,
ap+ a’p’ iO

(a, a’ =(p), =(p’)).
Just as in the case of the Ising model, (a, t) satisfies a peculiar

equal-time commutation relation with the free fields. Namely let
dp t)e(10) +(x’ t)= (p,

where
(11) a(p)=b(p).b(--p)- b(p)=(p+ip)(p+ip*)-,
with (0)= 1, b(O)=--i. Then we have
(12) (a, t)(x, t)--e(x--a)(x, t)(a, t).

In what ollows we shall restrict ourselves to the case of t=O. The
operator (a, 0) is abbreviated to (a).

We shall give ormal asymptotic expansions or the commutators
[5(p), (a)] as p .
where
(14) ()(a) +()(a)e(’)/ ".

We have also

p 3a

2. Let W(A) be an orthogonal space spanned by creation operators
()(p) and annihilation operators ()(p) (]= 1, ..., 2n; p e R) with the
following table of inner product’

0 l],]’n
2 ],+ u(p--p ) n+lg 2n, lg gn

((’(P)’(’)(P’) ]+,2u(p--p’) lg]gn, n+l]’2n
(_,_2u3(p-- p’) n+1], ]’g2n.
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Here A--(z,),,=,...,, is a symmetric n n matrix such that tz--0 (cf.
p. 253 in I [5] where 2z- 1). We define operators ((a) (resp.
by (8) (resp. (14)) with t(p), (p) replaced by *((p), ((p) and with
=0. For a, ..., a, e R satisfying a... a,, we abbreviate (+"(a)
(resp. (+>((a))to (resp. ), and introduce the ollowing main
objects in this note.
(17) r,(a, ..., a, A)=(... ,)(,,
(18) j/at’(1)’+(p ai an A) (P)((J’)(P)I ?)
(19) ,,,()’-(p a, a A) (p)( -(’ (’(

(=, ], ]’=, ..., n).
Here we mean by ( }() the vacuum expectation value with respect
to creation and annihilation operators (>(p) and (>(p).

Denote by R (]=1,..., n), K and K the integral operators with
kernels

( ’) ie(20) R(p, p’) dp’ 1 w-w’ --- 1
2 -j +’ -+’ 2 p+p’-io

dp’,

(21) K(p, p’) dp’ (00)(p..Fp,)dp,,27 1 0

(22) ’K(p, p’) dp’ (0 1)a(p+p,)dp,,2-= 0 0
respectively.

R.
R=

Hence w:"(p) is ex-

( e-iajlp+t(adl-a]2)Pl+"’+l(aj-aJ+l)P

1 1 1x (L=]’,
p--p+iO p--p.+iO p_--p+iO

where =(p), sz,,,=z,s,,, and z,=l (if j>j’), 0 (if]=’), --1 (if
jj’). A similar expression for reads as follows.

(25) logr=-- E 1 dp dp
= 21 ,,...,y= 2uio 2ui
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1 1
p--p+iO p-p+iO

3. We define w, (p) ( 2, 3) to be the right hand side o (24)
with p-p+iO replaced by p-p-iO (:2) or by p-p-ie,O (k=3).
This amounts to setting
(26) w:’(p)

(1)’--w, (p)+ a,=(1-e’)w’’ + a,=(l+g)w’(27)

Define 2n X2n magriees Y()= Y()(p) by

(28) , 1. ,+ _,..,_)

Then we have
(29) Y<>(p): <>(p)o(p)e,
where L=diag (-,...,--, 0,...,0), A=diag(-ia,, ...,--ia=,--ia,,

., ia) and

(30) ’’ Iy, (p) a,a,,+ dp dP= ,...,= 2i Zm

X
1 1 1 (], ], it, ])

Here () =1 (k 1) l(k 2) -e, (k=3) Each contour o* inte-
graion in (30) can be deormed either into C+ or into C_ o Fig. I.
<() (ep. <()) i holomophic nd inverible in he upper
lower) hl-plane, while <>() i holomorphic nd inerible ouide
C/ and C_.

Fig.

For the inverse of I((p), we have

(31)

Fig. 2
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X (/,*t-*_ **,,+)
1 1 1

() 0pl--p.+iO p_--p+iO
(L=i’, L+=i).

Summing up, Y(a)(p) is a multi-valued holomorphie magrix wigh

regular singularigies p=c, (s= 1, ..., 4) and an irregular singularity
o rank 1 at p=. Denote by r, ghe path encircling e, (Fig. 2), and
by r,Y()(p) ghe analytic eonginuaion o2 Y(a)(p) along r,. Then we have
g,Y(a)(p)= Y()(p)M,, wigh

1 22...

-g-l( fl-’+tfl t---tfl) fl....0 1 iM=M=-- _,_+,. _t-_t
0 0

4. For o=dlogv, we have a general formula -1--trace
2

(A(A)R)-A(A)dR (see [5]). This yields an expansion in A of, by
using the expressions for A(A), R and

1 w--M --o--M\(33) (dR)(p, p’)= (__,v/(o+oo,, ,, --o+oo’)e*"(+ 2’)da
1 dc

--(_0--0)’/ 8=1 (p--c)(p’+ c,)

Consider Taylor expansions" ]()(p)= . ,(p--c) (s=l, 2),
m----.O

]2.)(p)= (p_c) (s=3, 4) and 12)(p)= . /p. Expansions

in A of , as well as of g follow from (30) and (31). We note
that Y)(p) is so normalized hat 0 1. We find

(4) =.= 2
by comparing the series expression for with that for the right hand
side.

Setting --dY(3). y(3)-a, we have

(35) 9 Ad log (p c,) + d(pA=)+
where A,= ],0L]>, 0=[1=, dA=]. The integrability condition for 9,
d2--9=0, has been worked out by K. Ueno [9] in a more general
situation. The resulting completely integrable deformation equations
read
(36) dA.= [A,, A,,]d log (c,--c,,)-[A,, d(c,A=)+6)],

s" (s)
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(37)

with /= A,dc,. We also set A=,, A, and A=,, A,c,. Now
s=l S=I s=l

(34) is rewritten as

(

_
1 (AsAs,_L2)d log (cs--c,)1 trace AdA + OA--F-- ,(as)

+EA).
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