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On a Nature of Convergence o Some
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Department o Mathematics, University of Tokyo

(Communicated by KSsaku YOSIDA, M. Z. A., June 12, 1979)

1. Introduction. In the previous papers [6], [7] and [8], we
discussed convergence in the uniform operator topology of the Feynman
path integral under some assumptions concerning the potential func-
tion. In this note, we shall discuss pointwise convergence of the
Feynman path integral and we shall prove that it converges in a very
strong topology i the potential unction satisfies the same assumptions
as in the previous papers [6], [7] and [8]. As to the notion of the
Feynman path integral we refer Feynman [4] and Feynman-Hibbs [5].

Let x=(x, x,..., x) denote a point of R. We shall treat the
quantum dynamical system described by the Lagrangean o the orm

1( 1 ) L(t, x, 2)--- [2 V(t, x).

The potential function V(t, x) is assumed to satisfy the following as-
sumptions

( A-I ) V(t, x) is a real-valued function of (t, x) e R R. For any
fixed t e R, V(t,x) is a function of x e R of class C. V(t,x) is a
measurable function of (t, x) e R R.

(A-II) For any multi-index with its length [a[>2, the nonnega-
tire measurable function of t defined by

( 2 ) M.(t) sup V(t, x) + sup V(t, x)

is essentially bounded on every compact interval of R.
We fix a large integer K, say, K--100(n q-100). We put T--c if

l.lg ess. suptea M.(t) c. Otherwise, we let T denote an arbitrary
fixed positive number. We shall discuss everything in the time inter-
val (- T, T).

Let S(t,s,x, y) be the classical action along the classical orbit
starting from y at time s and reaching x at time t. We can prove
that there exists a positive constant 6(T) such that S(t, s, x, y) is uni-
quely defined or any x and y in R if [t-s[<_6(T)(cf. [4, Proposition
1]).

We shall consider the ollowing integral transformation"

( 3 ) E()(, t, s)?(x)= 2u(t-s) a.
(y)dy,

where a=i/t-, /i being a small positive parameter (=the Planck con-
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stant). This integral transformation was used in [7] and [8] (see also
[4]). Let [s, $] be an arbitrary time interval contained in (-T, T) and
let
(4) d s=t0<t<t<. <
be an arbitrary subdivision of the interval Is, t]. We denote
( 5 ) /(d) max Its-- t_ .

KjKL

We treat the iterated integral
I)(d , t, s, x, y)

(6) -, 2(t-t_3
x ex 2 S(t, t_, ,-) dz-.

=1
R X XR

Here x and x denote y and x, respectively. We shall prove that
I()( 2, t, s, x, y) converges as () tends to 0. More precise statements
will be found in the next section.

2. Main results. We apply a version of the stationary phase
method presented in [1] to the integral (6). Then, we can prove

Proposition 1. Assume that lt-sl(T). Then, we can write
I()( 12, t, s, x, y)

(7) =( -- )/ao(dl, t, s, x, y)e,,,
2z(t--s)

The amplitude function a()(d 2, t, s, x, y) belongs to the function space
(RXR) of Schwartz [11] as a function of (’x, y) e RXR with para-
meters d, , t and s.

We shall denote the above function a()(d , t, s, x, y) by a()(d, t, s)
when we consider it as an element of the function space (RxR")
with parameters d, , t and s. As usual, we shall use the norm I1
defined by

(8) Ilfll- E sup(,)ex f(x, y).

Our main result is
Theorem 1. Assume that It--s]G3(T). Then, the limit

( 9 ) k(2, t, s)= lim a()(d 12, t, s)
$()0

exists in the function space (RxR0. Moreover, for any positive

integer m, there exist positive constants r(m, T) and 3(T) such that
we have
(10) k(2, t, s)--a()(dl2, t, s)ll(m, T)(d),
for any subdivision A with (A)6(T). The constants (m, T) and

(T) are independent of any particular choice of t, s, A and if is
bounded away from O. 3(T) is independent of m.

We can make the convergence of the iterated integral faster if we
replace the parametrix E()(2, t, s) by E()(2, t, s), N 1, 2, 3. of Fuji-
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wara [6] and [8]. Let N be any fixed positive integer and let

(11) a)(,, t, s, x, y)-- . 2-a(t, s, x, y)
j=l

be the function (11) of [6] with N replaced by N--1. We use the in-
tegral transformation with the oscillatory kernel

,)n/(12) E()(2, t, s)(x)= [ 2(t--s) /

a()(2, t, s, x, y)e(t’’’)(y)dy

in place of (3). We use this and make the iterated integral
I()( , t, s, x, y)

a(, t, t_, x, x-)
(13) 2(t t_) a...

L

exp ] S(t, t_, x, x-)dx. dx-.
j=l

Then we have
Theorem 2. Assume that ]t--s]3(T). Then, we can write

y)eS(,,,)(14) I((A 2, t, , z,

it ome etio
tege mO, there eit oitive eotat r(m, T) e that e have
(15) I]k(, t, s)-a()(A , t, s)]]7(m, T)
if 6(A)(T). The constant 7(m, T) is independent of any particular
choice of t, s, A and if [ is bounded away from O.

The function

(16) K(2, t, , , )=
is he fundamental solution (Green’s unetion) for he Sehr6dinger
equation. In fae uing

(7) u(, t, )()= K(, t, , , v)(v)d,
we can rove ha U(2, t, ) coincides with he fundamental solution
constructed in [6], [7] and [8].

Concerning the asymptotic behaviour
(quasi-classical limit), we have

Theorem 3. I

j=

with some constant C depending on m. Here a(t, s, x, y) is the func-
tion appeared in (11).

3. Sketch of the proof of Theorems 1 and 2. We represent
the fundamental solution U(, t, s) as
(19) U(, t, s)=E()F(, t, s)+E()(, t, s),
where we used the abbreviation
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(20) E()#F(2, t, s)=J. E()(2, t, a)F(2, a, s)da.

The operator F(, t, s) should satisfy the equation
(21) F(, t, s) + G()$F(, t, s) + G()(, t, s)=0,
where G()(, t, s) is the integral operator given by

( )1 + V(t, x) E)(, t, s)(x),(22) G()(2, t, s)(x) +
for any in C(R). We solve the equation (21) and obtain, at least
formally,

(23)
F(2, t, s) 2G()(2, t, s) + (-2)G()G()(2, t, s)

+ (-)G()G()G()(, t, s) +....
Using the unction o(t, s, x, y)=(t-s)-(S(t, s, x, y)-2-(t-s)-[x-y]),
we have, in [7] and [8], that

G()(, t, s)(x)
(24) :(- )/(t-s)I Aw(t,s,x,y)eS(,,,v)(y)dy

2u(t-s) 2
and

G()(, t, s)(x)
(25) ( --2 )/ 2 -- zla(t, s, x, y)e(t’’’)(y)dy.

2(t--s) 2
If t--s]g(T), then we can write he kenel unction

(-)G()G(). G( as

(26) (t-) (, t, , , V)es(’",’.

Using he fundamental lemma whieh we shall sae in , we can rove
Proposition

(27) c)(2, t, s)g
(2k)

and

(28) IIc>(, t,s)ll_ r(m, T,N) i (+, ](/.)-
F(k(N+2))

[2- It--s
for k2 and NI if t-s[3(T).

This proposition implies that the infinite series

(29) k(2, t, s, x, y)= c})(2, t, s, x, y)
=1

converges in the space (RR) if ]t--s[(T). This time interval
may be very shoot. But this restriction can be removed by the evo-
lution property of the undamental solution. We have from (23)

Proposition . The function k(2, t, s, x, y)es(t,’,) is the funda-
mental solution for the Schr6dinger equation. For any integer mO,
(30) k(2, t, s)- 11 C It- s
and
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(31)
hold, where C is a positive constant independent of t, s and if ]] is
bounded away from O.

Theorems 1 and 2 follow from this and the fundamental lemma.

4. The fundamental lemma. Assume that ]t--s[3(T). Let
(32)
be an arbitrary subdivision of the interval [s, t]. Let a(x, y), a(x, y)
..a(x, y) be arbitrary unctions in the space (RXR). Consider

the iterated integral

(33) L

j=l j=l
R X XR

Then, the stationary phase method proves that this is equal to

((84)
2(t-

wih some amplitude funeion (A 12, t, , z, ) in (NX N).
Lemma

(T), (m)

(35)
j=l

if It-s](T). The constants 3(T),(m) and R(m) are independent
of L, functions a, a,..., a, subdivision and of if I[ is bounded
away from O. (T) is also independent of m.

This lemma is proved by using our previous results in [1] and a
variation of the technique of Taniguchi and Kumanogo in Kumanogo
[10].

Remark. Chazarain [2] [3] and Kitada [9] use parametrices sim-
ilar to ours (3) and (12).
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