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45. On a Nature of Convergence of Some
Feynman Path Integrals. I

By Daisuke FUJIWARA
Department of Mathematics, University of Tokyo

(Communicated by Koésaku YosIDA, M. J. A., June 12, 1979)

§ 1. Introduction. In the previous papers [6], [7] and [8], we
discussed convergence in the uniform operator topology of the Feynman
path integral under some assumptions concerning the potential func-
tion. In this note, we shall discuss pointwise convergence of the
Feynman path integral and we shall prove that it converges in a very
strong topology if the potential function satisfies the same assumptions
as in the previous papers [6], [7] and [8]. As to the notion of the
Feynman path integral we refer Feynman [4] and Feynman-Hibbs [5].

Let v=(x,, x,, - - -, x,) denote a point of R*. We shall treat the
quantum dynamical system described by the Lagrangean of the form

(1) L, z, ¢)=_;_1¢12—V(t,x).

The potential function V(¢, x) is assumed to satisfy the following as-
sumptions;

(A-I) V¢, ) is areal-valued function of ((, x) e RXR". Forany
fixed te R, V({,2) ts a function of xeR" of class C>. V(t,x) is a
measurable function of (¢, x) e RXR"

(A-II) For any multi-index a with its length |a|>2, the nonnega-
tive measurable function of t defined by

(2) M.()=sup (-a%)“V(t, w)\ +sup|V(t, )|

18 essentially bounded on every compact interval of R.

We fix a large integer K, say, K=100(n+100). We put T'=co if
D e<iai<x €88, SUP;er M, (f)<<oo. Otherwise, we let T denote an arbitrary
fixed positive number. We shall discuss everything in the time inter-
val (=T, 7).

Let S(t, s, x,y) be the classical action along the classical orbit
starting from y at time s and reaching x at time . We can prove
that there exists a positive constant 6,(T) such that S(t, s, z, ¥) is uni-
quely defined for any x and y in R" if [t —s|<d,(T)(cf. [4, Proposition
1D).

We shall consider the following integral transformation:

(0) — —A /2 A8(t,8,2,¥)
(3) BOG, t, (@)= (54 ( t_s)) [ e o@)dy,
where 1=4#""!, # being a small positive parameter (=the Planck con-
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stant). This integral transformation was used in [7] and [8] (see also
[4]). Let [s, ¢t] be an arbitrary time interval contained in (— T, T) and
let

(4) 4d;s=t,<t,<t, < - -<t,=t
be an arbitrary subdivision of the interval [s,f]. We denote
(5) ()= max |t,—t,_,|.

1<j<L

We treat the iterated integral
19412, t S, T, Y)

(6) =1 (w—_ﬂ))

X[ o [omr $50t, 02900 - dai
R2 X+ XR? i=1
Here 2° and a* denote y and x, respectively. We shall prove that
I®(4|2,t, s, x, y) converges as 6(4) tends to 0. More precise statements
will be found in the next section.
§2. Main results. We apply a version of the stationary phase
method presented in [1] to the integral (6). Then, we can prove
Proposition 1. Assume that |t—s|<6,(T). Then, we con write
Io(4|2,¢, 8,2, %)

— n/2
( 7 ) ___( 2 ) a(O)(A | 2, t’ s, %, y)eRS(t,s,x,y).

BR2X R of Schwartz [11] as a function of (x,y) € R* X R" with parae-
when we consider it as an element of the function space BR"xXR"™)
(8) [flln= 2. SUDG,yermxme

Theorem 1. Assume that |t—s|<8,(T). Then, the limit
exists in the function space BR:EXRY). Moreover, for any positive
@0) k@, t, 8)—a®(d]|2, t, 8) || <y:(m, T)a(4),
bounded away from 0. §,(T) is independent of m.

2n(t—s)
The amplitude function a (4|2, t, s, z,y) belongs to the function space
meters 4, 2, t and s.

We shall denote the above function a®(4|2, t, s, x, y) by (412, ¢, 8)
with parameters 4, 4,t and s. As usual, we shall use the norm | |,
defined by

(2)(5) s
lal4T8lsm ox

Our main result is
(9) kQ, t, 8)= lim a®(4]|2,t,s)

3(4)~0
integer m, there exist positive constants y,(m, T) and 6,(T) such that
we have
for any subdivision 4 with 3(4)<5,T). The constants r(m,T) and
5,(T) are independent of any particular choice of t,s, 4 and 2 if |2] is

‘We can make the convergence of the iterated integral faster if we
replace the parametrix E®(2, t, s) by E™(4,¢,8), N=1,2,3- - - of Fuji-
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wara [6] and [8]. Let N be any fixed positive integer and let
(11 a4, t, 8, 2, Y)= i‘ oy, s, 2, )
j=1

be the function (11) of [6] with N replaced by N—1. We use the in-
tegral transformation with the oscillatory kernel
(12) E(N)(Z, t, s)go(x): (———j——)n/zf a/(N)(/zy t’ S, X, ’.l/)@w(t’s’x’wso(?/)d?/
2x(t—s) R®
in place of (8). We use this and make the iterated integral
I, t, 8,2, 9)

= ﬁ (#L)n/zj' J. ﬁwm(z ot !, 20
(13) = Zﬂ(tj——tj_l) R7X+e0 XRA s=1 PR

L
exp 2 >, Sy, t;_p, &, &' dat- - - dat.
j=1

Then we have
Theorem 2. Assume that |t—s|<6,(T). Then, we can write
(14) IMU|2t, s, @,y)= (—i)maw)(d [2, ¢, 8, &, y)esEomn
2n(t—s)
with some function a™’(4|2,t,s) e BREXRY. Moreover, for any in-
teger m>0, there exists positive constant y,(m,T) such that we have
(15) £, £, ) —a™(4]2, t, )|l <ye(m, T) |2]"Vo(4)7,
if (D <o,(T). The constant y(m, T) is independent of any particular
choice of t, s, 4 and 2 if |4 is bounded away from 0.
The function
@1e) K@, t,s,x, y)= (—“i_—)nnk(l’ t, s, x, y)esHsan
2n(t—s)
is the fundamental solution (Green’s function) for the Schrédinger
equation. In fact putting

an UG, t, )p(@)=[  KG,t, 5,2, 1))y,
we can prove that U(,t,s) coincides with the fundamental solution
constructed in [6], [7] and [8].

Concerning the asymptotic behaviour of k(3,t,s,x,y) as |[A|—>oo
(quasi-classical limit), we have

Theorem 3. If |t—s|<d,(T), then, for any integer m>0, we have

18) Hk(z, £, 8)— jﬁl 29, s)ngCm 2 |E—sp

with some constant C,, depending on m. Here a,(t, s, z,y) is the func-
tion appeared in (11).

§3. Sketch of the proof of Theorems 1 and 2. We represent
the fundamental solution U(4, ¢, s) as
(19) U@, t,s)=EY4F(, t,s)+EY (4, t, ),
where we used the abbreviation
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(20) EW3FQ, t,s) = j "B, t, )FQ, 0, 8)do.
The operator F'(4, t, s) should satisfy the equation
21) FQ,t,8)+AGY4F (A, t, 8) + 2G4, t, 8)=0,

where G¥’(4, t, s) is the integral operator given by

@) G0t 9@ =(-2 +3 3 (52-) + V&, ) BV G, t, )o@,
a0t Ao,

for any ¢ in Cy(R"). We solve the equation (21) and obtain, at least

formally,

@3) F,t,8)=—2G™ @, t, 8) + (— D) GYVEGYM (A, t, 8)
_l_(_l)sG(N)#G(N)#G(N)(Z, t,8)+---.

Using the function w(t, s, z, ¥)=({E—s8) (S, s, 2, ¥) —27'(t—8) |z —y P,

we have, in [7] and [8], that

G(O)(Z’ t, S)So(x)
(€2))] — —2 2 (t 3) do(t, 28 (£,8,2,9) d
(27: =9 ) I w(t, s, ®, Y)e o(y)dy,
and
G(N)(Za t, S)So(x)
(25) —2 n/2 2 ~N-t
— A t ) &, 28 (8,8,2,Y) d
(2zr(t—s) ) 2 I ay(t, 5, @ y)e )y

If |t—s|<0,(T), then we can write the kernel function of
(=D*GVEG™E- - -GN as

'_"2 n/2 (N) A8 (£,8,2,Y)
(26) <m) (2, t, 8, x, Y)e .
Using the fundamental lemma which we shall state in §4, we can prove

Proposition 2. For any integer m>0, there exists positive con-
stant y(m, T, N) such that we have

(0) y(m, T, 0)* pe-1
@7 e, ¢, S)IIm<————F(2k) [t—s] for k>2
and

) ym, Ty N)* ovicewen | ofei+2-1
(28) ¢, t, 9) [l < TN 12)) 2] |t—s|

for k>2 and N>1 if |t —s|<a,(T).
This proposition implies that the infinite series

(29) k@, t, 8,2, 9)= Z M4, t, 8,2, Y)

converges in the space SRz X R”) 1f |t—8|<6,(T). This time interval

may be very shoot. But this restriction can be removed by the evo-

lution property of the fundamental solution. We have from (23)
Proposition 3. The function kQ,t,s, x, y)e** =¥ is the funda-

mental solution for the Schrodinger equation. For any integer m>0,

(30) ”k(29 t, 3)_‘1”m£0mlt_siz

and
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31) 1@, t, 8)—a (4, t, 8) || < Cp |A]7Y [t —s|V!
hold, where C,, is o positive constant independent of t, s and 2 if |4] is
bounded away from 0.
Theorems 1 and 2 follow from this and the fundamental lemma.
§4. The fundamental lemma. Assume that |t—s|<6,(T). Let
(32) A;S=to<t1<"'<tL=t
be an arbitrary subdivision of the interval [s, t]. Let a,(x, v), a,(x, ¥)
.- .a(x, ¥) be arbitrary functions in the space BR"*XR"). Consider
the iterated integral

L _ n/2
) M, (?(#)

xf e ﬁ a,@’, ') exp 2 f Sty 0!, x!)dat- - - da .
j=1 i=1
RAX«eo XRE
Then, the stationary phase method proves that this is equal to
___2 n/2
34 <—_.___) o A4 1’ t, s, x, elS(t,s,x,y)
34 oy V)

with some amplitude function a(4]2, ¢, s, z, ¥) in BREXR)).
Lemma 4. For any integer m>0, there exist positive constants
0,(T), e(m) and R(m) such that

(35) 10412, )l <6 [1 10l

if |t—s|<0.(T). The constants 6,(T), k(m) and R(m) are independent
of L, functions a,, a, - - -, 0., subdivision 4 and of Aif || ts bounded
away from 0. 06,(T) is also independent of m.

This lemma is proved by using our previous results in [1] and a
variation of the technique of Taniguchi and Kumanogo in Kumanogo
[10].

Remark. Chazarain [2] [3] and Kitada [9] use parametrices sim-
ilar to ours (3) and (12).
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