38. Note on Certain Nonlinear Evolution Equations of Second Order

By Yoshio Yamada
Department of Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1979)

1. Introduction. In this note we consider nonlinear evolution equations of the form
(1.1) $\quad u^{\prime \prime}(t)+A u(t)+B(t) u^{\prime}(t)=f(t), \quad 0 \leqq t \leqq T$, with initial conditions
(1.2) $u(0)=u_{0} \quad$ and $\quad u^{\prime}(0)=u_{1}$, ($\left.u^{\prime}(t)=d u(t) / d t, u^{\prime \prime}(t)=d^{2} u(t) / d t^{2}\right)$, where A is a nonlinear operator and each $B(t)$ is a formally self-adjoint positive operator.

When $B(t) \equiv 0$, there are a great number of results on non-existence of global weak solutions of (1.1) (see e.g. Knops-Straughan [4] and the cited papers therein). However, as for the existence of a global weak solution for an abstract Cauchy problems (1.1) and (1.2), where A is a genuinely nonlinear operator, it seems that there are few results except for Tsutsumi's [8]. He obtained sufficient conditions for the global existince under the presence of the dissipative term $B(t) u^{\prime}(t)$.

The purpose of the present note is to show the existence of a global weak solution of (1.1) and (1.2) satisfying a certain inequality of energy type. Especially, we intend to weaken the assumptions of Tsutsumi [8] so that the result can be applied to a wider class of nonlinear partial differential equations.
2. Assumptions and result. Let H be a real separable Hilbert space with inner product (\cdot, \cdot) and norm $|\cdot|_{H \cdot}$. Let W be a second real separable Hilbert space with norm $|\cdot|_{W}$ and let V be a real separable reflexive Banach space with norm $|\cdot|_{V}$. Suppose that

$$
V \subset W \subset H
$$

where each injection is dense and continuous. Furthermore, the injection of W into H is compact. As usual, we identify H with its own dual and denote by V^{*} and W^{*} the dual spaces of V and W, respectively. Then the following inclusion relation holds:

$$
V \subset W \subset H \subset W^{*} \subset V^{*}
$$

The pairing between $x^{*} \in V^{*}\left(r e s p . x^{*} \in W^{*}\right)$ and $x \in V$ (resp. $x \in W$) is simply denoted by $\left(x^{*}, x\right)$; if $x, x^{*} \in H$, this is the ordinary inner product in H.

Throughout this note we put the following assumptions on the nonlinear operator $A: V \rightarrow V^{*}$.
(A. 1) For each $u \in V, A u \in V^{*}$ is the Gâteaux differential of a convex functional F_{A} at u, which is lower semicontinuous on V.
(A. 2) For each $c>0,\left\{u \in V ; F_{A}(u) \leqq c\right\}$ is bounded in V.
(A. 3) A maps every bounded set of V into a bounded set of V^{*}.

For the linear operator $B(t): W \rightarrow W^{*}$, we assume the following.
(B. 1) For each $t \in[0, T], B(t)$ is a linear operator associated with a symmetric bilinear form $b(t ; \cdot, \cdot)$ on W, which satisfies

$$
\begin{array}{r}
|b(t ; u, v)| \leqq b_{1}|u|_{W}|v|_{W} \text { and } \quad b(t ; u, u) \geqq b_{2}|u|_{W}^{2} \\
\text { for } \forall u, v \in W,
\end{array}
$$

where b_{1} and b_{2} are some positive constants independent of t.
(B. 2) For each $u, v \in W, t \mapsto b(t ; u, v)$ is continuously differentiable on $[0, T]$ and $\dot{b}(t ; u, v)(\equiv d b(t ; u, v) / d t)$ has the following property : If $u_{n} \rightarrow u$ weakly in W as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} \sup \dot{b}\left(t ; u_{n}, u_{n}\right) \leqq \dot{b}(t ; u, u)$ for every $t \in[0, T]$.

Under these assumptions we have the main result.
Theorem 2.1. Let $u_{0} \in V, u_{1} \in H$ and $f \in L^{2}(0, T ; H)$. Then there exists a function u such that

$$
\begin{gather*}
u \in L^{\infty}(0, T ; V), \tag{2.1}\\
u^{\prime} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; W), \tag{2.2}\\
u^{\prime \prime} \in L^{2}\left(0, T ; V^{*}\right),
\end{gather*}
$$

and satisfies (1.1), (1.2) and the following inequality; for any positive function $\psi \in C^{1}[0, T]$

$$
\begin{align*}
& \psi(t) E(u(t))+\int_{s}^{t} \psi(r) b\left(r ; u^{\prime}(r), u^{\prime}(r)\right) d r \\
& \leqq \psi(s) E(u(s))+\int_{s}^{t} \psi^{\prime}(r) E(u(r)) d r+\int_{s}^{t} \psi(r)\left(f(r), u^{\prime}(r)\right) d r \tag{2.4}\\
& \text { a.e. } 0 \leqq s \leqq t \leqq T
\end{align*}
$$

where

$$
E(u(t))=\frac{1}{2}\left|u^{\prime}(t)\right|_{H}^{2}+F_{A}(u(t)) .
$$

Remark 2.2. If the injection of V into W is also compact, then the conclusion of Theorem 2.1 holds true with (B. 2) replaced by the following weaker assumption:
(B. 2)' For each $u, v \in W, t \mapsto b(t ; u, v)$ is continuous on [0, T].

Remark 2.3. Our assumptions (A.1)-(A. 3) generalize the corresponding ones of Tsutsumi [8]; in particular, it is unnecessary to assume the homogeneity condition of A.
3. Outline of the proof. First we shall prepare some lemmas to prove Theorem 2.1.

Lemma 3.1. A is a maximal monotone and demicontinuous operator from V to V^{*}.

Proof. By (A. 1), it is easily shown that A is a maximal monotone operator from V to V^{*} (see e.g. Barbu [1, Chap. 2, § 2]). So the demi-
continuity of A follows from the result of Rockafellar [7, Cor. 1.1].
Lemma 3.2. Let $u \in C^{1}([0, T] ; V)$. Then

$$
\frac{d}{d t} F_{A}(u(t))=\left(A u(t), \frac{d}{d t} u(t)\right) \quad \text { for every } t \in[0, T] .
$$

Proof. By the definition of the subdifferential (see e.g. [1]),

$$
\begin{align*}
(A u(t+h), u(t+h)-u(t))) & \geqq F_{A}(u(t+h))-F_{A}(u(t)) \\
& \geqq(A u(t), u(t+h)-u(t)) . \tag{3.1}
\end{align*}
$$

Dividing (3.1) by h and letting $h \rightarrow 0$, we obtain the conclusion. (Note that $t \rightarrow A u(t)$ is weakly continuous in V^{*} by Lemma 3.1.)

Let $1 \leqq p \leqq \infty$. We recall the fact that, for any $u \in L^{p}(0, T ; V)$, $t \leftrightarrow A u(t)$ is strongly measurable in V^{*} by Lemma 3.1 and the result of Brezis [2, Appendice IV]. Define the operator $\mathcal{A}: L^{p}(0, T ; V) \rightarrow$ $L^{p^{\prime}}\left(0, T ; V^{*}\right)\left(1 / p+1 / p^{\prime}=1\right)$ with the domain $D(\mathcal{A})$ as follows:

$$
\begin{aligned}
& D(\mathcal{A})=\left\{u \in L^{p}(0, T ; V) ; A u \in L^{p^{p}}\left(0, T ; V^{*}\right)\right\} \\
& (\mathcal{A} u)(t)=A u(t) \quad \text { for a.e. } t \in[0, T] .
\end{aligned}
$$

Then we have the following lemma whose proof can be found in [2, Appendice I].

Lemma 3.3. \mathcal{A} is a maximal monotone operator from $L^{p}(0, T ; V)$ to $L^{p^{\prime}}\left(0, T ; V^{*}\right)$.

Now we shall begin the proof of Theorem 2.1. It is very standard, so we only sketch it here. For details, see Tsutsumi [8].

We employ the Galerkin's method and take $\left\{w_{j}\right\}$ as the basis. Define approximate functions $u_{m}(t)$ as follows;

$$
u_{m}(t)=\sum_{j=1}^{m} a_{j_{m}}(t) w_{j},
$$

where unknown functions $a_{j m}$ are determined by the following ordinary differential equations

$$
\begin{aligned}
\left(u_{m}^{\prime \prime}(t), w_{j}\right)+\left(A u_{m}(t), w_{j}\right)+b\left(t ; u_{m}^{\prime}(t), w_{j}\right)=\left(f(t), w_{j}\right), \\
j=1,2, \cdots, m,
\end{aligned}
$$

with initial conditions

$$
\begin{aligned}
u_{m}(0)=u_{0, m}, & u_{0, m}=\sum_{j=1}^{m} \alpha_{j m} w_{j} \rightarrow u_{0} \\
& \text { strongly in } V \text { as } m \rightarrow \infty, \\
u_{m}^{\prime}(0)=u_{1, m}, & u_{1, m}=\sum_{j=1}^{m} \beta_{j m} w_{j} \rightarrow u_{1} \\
& \text { strongly in } H \text { as } m \rightarrow \infty .
\end{aligned}
$$

Having proved Lemmas 3.2 and 3.3, we can repeat the same procedure as in [8] with an obvious modification. We can, therefore, extract a subsequence $\left\{u_{\mu}\right\}$ of $\left\{u_{m}\right\}$, which converges (in the sense of [8]) to a weak solution u of (1.1) and (1.2) satisfying (2.1)-(2.3). Note that the convergence properties of $\left\{u_{\mu}\right\}$ in $[8,(2.14)-(2.23)]$ still remain true.

To prove that the weak solution u satisfies (2.4), we use the following lemma which is obtained as a consequence of the above proof (cf. [9, 4.2]).

Lemma 3.4. For any function $\phi \in C[0, T]$ and $t \in[0, T]$,

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \int_{0}^{t} \phi(s)\left(A u_{\mu}(s), u_{\mu}(s)\right) d s=\int_{0}^{t} \phi(s)(A u(s), u(s)) d s \tag{3.2}
\end{equation*}
$$

Now we note that the following inequality holds by (A. 1) :
(3.3) $\quad F_{A}(u(t))-F_{A}\left(u_{\mu}(t)\right) \geqq\left(A u_{\mu}(t), u(t)-u_{\mu}(t)\right), \quad{ }^{\forall} t \in[0, T]$.

Hence, with the help of (3.3) and the lower semicontinuity of F_{A}, (3.3) leads to the following : For any function $\phi \in C[0, T]$ and $t \in[0, T]$,

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \int_{0}^{t} \phi(s) F_{A}\left(u_{\mu}(s)\right) d s=\int_{0}^{t} \phi(s) F_{A}(u(s)) d s \tag{3.4}
\end{equation*}
$$

which, in particular, implies that

$$
\begin{equation*}
\liminf _{\mu \rightarrow \infty} F_{A}\left(u_{\mu}(t)\right)=F_{A}(u(t)) \quad \text { for a.e. } t \in[0, T] . \tag{3.5}
\end{equation*}
$$

Recall that the equality in (2.4) holds true for $0 \leqq s \leqq t \leqq T$ if u is replaced by u_{μ} (use Lemma 3.2). Hence taking the inferior limit of the both sides of the resulting expression and using the convergence properties (3.4), (3.5) and [8, (2.15), (2.23)], we see that u satisfies (2.4).
4. Applications. Let Ω be a bounded domain in R_{x}^{n} with smooth boundary Γ. We consider the following two examples.

Example 4.1. Let $J(\xi)$ be a convex $C^{1}\left(R_{\xi}^{n}\right)$-function satisfying

$$
\begin{array}{ll}
\alpha_{1}|\xi|^{p} \leqq J(\xi) \leqq \alpha_{2}\left(|\xi|^{p}+1\right), & \forall \xi \in R_{\xi}^{n}, \\
\left|\partial J(\xi) / \partial \xi_{i}\right| \leqq \alpha_{3}\left(|\xi|^{p-1}+1\right), & \forall \xi \in R_{\xi}^{n}, i=1,2, \cdots, n,
\end{array}
$$

with

$$
p \geqq 2, \alpha_{1}, \alpha_{2}, \alpha_{3}>0 \quad \text { and } \quad|\xi|^{2}=\sum_{i=1}^{n} \xi_{i}^{2} .
$$

Set

$$
a_{i}(\xi)=\partial J(\xi) / \partial \xi_{i}, \quad i=1,2, \cdots, n .
$$

We consider the following initial boundary value problem

$$
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}(\operatorname{grad} u)\right)-b(t) \Delta \frac{\partial u}{\partial t}=f & \text { in } \Omega \times[0, T], \\ u(x, t)=0 & \text { on } \Gamma \times[0, T], \\ u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=u_{1}(x) & \text { in } \Omega,\end{cases}
$$

where f, u_{0} and u_{1} are given functions and $b \in C^{1}[0, T]$ is a monotone non-increasing positive function (cf. Tsutsumi [8]).

Take $H=L^{2}(\Omega), V=W_{0}^{1, p}(\Omega)$ and $W=H_{0}^{1}(\Omega)$. If we put

$$
F_{A}(u)=\int_{\Omega} J(\operatorname{grad} u(x)) d x
$$

we easily see that our hypotheses are satisfied. Thus we can apply Theorem 2.1 to the above problem.

Example 4.2. Next we consider nonlinear partial integro-differential equations of the form

$$
\frac{\partial^{2} u}{\partial t^{2}}-M\left(\int_{\Omega}|\operatorname{grad} u(x)|^{2} d x\right) \Delta u-b(t) \Delta \frac{\partial u}{\partial t}=f \quad \text { in } \Omega \times[0, T]
$$

with the same initial and boundary conditions as Example 4.1 (cf.

Dickey [3], Medeiros [5] and Pohozaev [6]). Suppose that M is a continuous and monotone non-decreasing function on $[0, \infty)$ satisfying

$$
M(0) \geqq 0 \quad \text { and } \quad \int_{0}^{\infty} M(r) d r=\infty
$$

Take $H=L^{2}(\Omega)$ and $V=W=H_{0}^{1}(\Omega)$ and define

$$
\Phi(r)=\int_{0}^{r} M(s) d s
$$

Then putting

$$
F_{A}(u)=\frac{1}{2} \Phi\left(\int_{\Omega}|\operatorname{grad} u(x)|^{2} d x\right),
$$

we can apply Theorem 2.1. In this example, it is easily seen that the equality in (2.4) holds true. Furthermore, if M is a $C^{1}[0, \infty)$-function satisfying $M(0)>0$, we can derive the uniqueness of weak solutions.

References

[1] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publ. (1976).
[2] H. Brézis: Problèms unilatéraux. J. Math. Pures Appl., 51, 1-168 (1972).
[3] R. W. Dickey: Infinite systems of nonlinear oscillation equations related to the string. Proc. Amer. Math. Soc., 23, 459-468 (1969).
[4] R. J. Knops and B. Straughan: Non-existence of global solutions to nonlinear Cauchy problems arising in mechanics. Trends in Applications of Pure Mathematics to Mechanics (ed. by G. Fichera) Pitman Publ. (1976).
[5] L. A. Medeiros: Sur une équation non linéaire de la physique mathématique. C. R. Acad. Sc. Paris, 286, 277-278 (1978).
[6] S. I. Pohozaev: On a class of quasilinear hyperbolic equations. Math. USSR Sbornik, 25, 145-158 (1975).
[7] R. T. Rockafellar: Local boundedness of nonlinear, monotone operators. Michigan Math. J., 16, 397-407 (1969).
[8] M. Tsutsumi: Some nonlinear evolution equations of second order. Proc. Japan Acad., 47, 950-955 (1971).
[9] Y. Yamada: On the decay of solutions for some nonlinear evolution equations of second order. Nagoya Math. J., 73, 69-98 (1979).

