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37. A Version of the Central Limit Theorem
for Martingales

By Shigeru TAKAHASHI
Department of Mathematics, Kanazawa University

(Communicated by Késaku Yosipa, M. J. A., May 12, 1979)

§ 1. Introduction. In the present note let {X,, &,} be a zero-
mean square-integrable martingale on a probability space (2, &, P) and
let Y,=X,,Y,=X,—X,_, ®m=2). Then our purpose is to prove the
following

Theorem. Suppose that there exist a sequence {A,} of positive
numbers for which lim,,_ .. A,= + oo and a random variable Z(w) such
that

L-D  for any given ¢>0,lim, ., A;* > E{Y;I(Y,|=e4,)}=0,*

(L1 lim,.,.A;?> %, Yi=Z, in probability.

Then for any set F € o((Ug-, F,) and any real number x (x+0)
lim P{F, X, (o) /Aéx}:(zn)-lﬂL {I/ " exp (—u? /2)du}dP,

n—+ oo

where o(\ s, F,) denotes the o-algebra generated by the algebra
U1 F, and /0 is + oo (or — o) if x is positive (or negative).

In the important special case when Y,’s are independent and &,
is the c-algebra generated by {X,, k<n} the condition (L-I) for A2
=FEX? is called Lindeberg’s condition for the central limit theorem
and in this case (L-I) implies (L-II) with Z(w)=1. But in general (L-I)
does not imply (L-II) and even if the conditions (L-I) and (L-II) are
satisfied the limit Z is not necessarily a constant. When Z(w) is a con-
stant, the central limit theorems are proved by many authors (cf. [1]).

As an application of Theorem we can prove the central limit theo-
rem for {X,}. In fact we prove the following

Corollary. Under the conditions (L-1) and (L-1I) ¢f P{Z(w)+0}>0,
then we have for any real number x

lim P{X, (0)/A, <2V Z(w)| Z(0)#0}=(27) '/ r exp (—u?/2)du.

In §2 we prove Theorem. By Lévy’s continuity theorem it is
enough to show that, for any fixed real number 2,

1.1 lim | exp (i2X, /A,,)dP:L exp (— 27 /2)dP.

n—+oo

The right hand side of the above formula is the Fourier-Stieltjes
/N7
transform of the function (2n)‘1/2I {I ’ Zexp (—uz/Z)du}dP, —oco<l®
F

* J(A) denotes the indicator of the set A.
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< oo,

§2. Proof of Theorem. By the condition (L-I) there exists a
sequence {¢,} of positive numbers such that
@.1) {25,,,_3_1 for all m, ¢,—0, > 2_, P(|Y,|=¢,4,)—0 and

A2 > E{Y(Y,|=e,A )10, as n— 4 co.
Using this sequence {e,} let us put for k=1 and n>1
Y, .=Yl(Y,|<e,A4,)—E{Y I(|Y,|<e,AD|F -1}

Then for each n, {Y,,,, F:, k=1} is a martingale difference sequence.

Lemma 1. We have

(i) lim,..,. A;l Zﬁ=1|yk—yk,n|=0, m pr.,

(i) lim,.,. A 3% Yi.=2Z, in pr.

Proof. Since |E{Y (Y, |<e,A)F . }=|E{Y (Y, |=e,A)|F . .},
we have by (2.1)

A7 S E|Y—Y,,|<24; 3 E|Y (Y, |=e,A4,)]
k=1 k=1

<245 3 {P(Y, |25, A)EY(Y,[2e,A4,))"
k=1
<2{3 P(Yulze 40} {47 5 BYIU(Y,[ze40) -0,
k=1 k=1
as n— -+ oo,
and we can prove the first part. Next we have

A7 3| Vi Yial< max (V|4 Yo DA 351 V,— Yl
Therefore, we can prove (ii), by (2.1), (i) and (L-II).

Now for any fixed positive number M and n=1 let us put
_ _[Hoo, i3 Yi(@=MAS,

S, M) =5, ()= {min fm; S Y2 (@) >MA?),  otherwise.
Then for each %, S,(w) is a stopping time with respect to {,} and
2.2) S (0) =M /4,
because | Y, ,(0)|<2¢,A4,. Next we put, for k=1,2, --.,n and n=1,2,

(2'3) l/}k,'nz yk,nl(sngk) and (—:Ek,nzgmin(k,sn)'
Then for each n, {Y, ., &F, ., k=1} is a martingale difference sequence
(cf. [2, p. 300]) and by (2.1) and (2.3), we have

@.4) A5V <M+4e<M+1.
In the followingki;t 2 denote any fixed real number and
Py, D=Pen@) =[] (L+i] (@47,
Lemma 2. We have, for any set F e o(U:, F,),
lim ; P, (w)dP=P(F).

N+ 00

Proof. Since |P, [ <exp (B4;% >k, Yﬁ,n), (2.4) implies that
2.5) | Py o F<exp {2(M+1)}, for 1<k<n and n=>1.
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On the other hand from the theory of measure it follows that if
Feo(Up-.1 &), then for any given ¢>0 there exists a set G such that
P{FAG}<eand Ge | J;_,F,. Therefore, by (2.5) and the above fact it
suffices to prove the lemma for any set F e &, where m is any fixed
positive integer. Hereafter we assume that F e &,,. Then by (2.2) it
is seen that

(2.6) Fed, ,, for all (k, n) such that m<k and m<M /4.

Hence by (2.1), (2.6) and (2.5), we have for sufficiently large n

L Pn,,,(w)dP=L {1 + kzl ilf’k,n(w)A;‘P,c_l,n(w)}dP

—PE)+ 3 [ 130 @ AT Py u@)P
k=1JF
=PF)+0(m e A|(1+|2,4D™Y)
=P(F)+0(1), as n— 4+ oco.
Lemma 3. We have, for any set F e o(z., F,),
lim [ exp (iz 5 ?k,n/A,,)dP=I exp (— 1Z,,/2)dP,
F k=1 F

where Z (w)=min {Z(v), M}.
Proof. From (2.3) and (2.1) it is seen that

A7V, =AY, if S0, )20,
T=1 k=1

M<A;3 Vi, <M+4e, it S, M)<n.
k=1
Therefore, (ii) in Lemma 1 and (2.1) imply that
lim A4;° }n: ?i,n=ZM, in pr.
k=1

n—+ oo

Hence, by (2.5)
lim E P,,,,,{exp (—zz > ?i,n/ZA?z)—eXp (—zZZM/z)}{=0.
=1

n—+ oo

On the other hand since Lemma 2 and (2.5) imply that
lim | P, exp (—zzzM/z)dP=f exp (— 22, /2)dP,
F F

we have o
@7 lim [ P, exp (_zz 5 Yz,n/zAz,)dP=j exp (— 2%, /2)dP.
n—+oo J F k=1 F

Further it is easily seen that if |z| <1/2, then
exp (x)=(1+x) exp {(x*/2)+0(x)} and |6(x)|<|x)’.
Therefore, by (2.1) and (2.4)

37 06T, /A) |26, 1 2F M+ D =0(1),  as n>+oo,
k=1
and since |P, , exp (—2 > 7, Y?c,n/2A?,)|_§ 1, we have

exp (12 35 Vy0dit) =P, exp {2 33 V1,/243+ 3 00020 1.0/ A,)

k=1 k=1 k=1
=Pn,n exp (_22 Zn: Y)‘vlzc,n/zAfa> +0(1),
k=1
uniformly on 2, as n— + co.
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Thus by the above relation and (2.7) we can prove the lemma.
Lemma 4. We have, for any set F e o(\ ., F,),
lim [ exp <i2 Y, /An)dP= f exp (— 2Z/2)dP.
F k=1 F

n—+ oo

Proof. By (i) in Lemma 1 it is enough to show that
2.8) lim [ exp (u > Yk,n/An)dP=j exp (—2Z/2)dP.
F k=1 F

If we put E,={Z(w)>M}and E, ,={A;* > ", Y} .(w)>M}, then (ii) in
Lemma 1 implies that P(¥, ,)—P(¥,) as n—+co, at the continuity
points M of P(E,). Therefore, for any given ¢>0 we can take M and
n, such that
P(E,)<e and P, ,)<e if n=n,.
Since w ¢ K, , and k=n imply that ¥, (o)=Y, ,(w), we have for n=mn,
{E' lexp (12 2 ko1 Yin/Aw) —exp (02 2001 Yin/ A <2,
E\exp (—2Z,/2)—exp (— 12Z [2)|<e.

Thus by Lemma 3 and above relations we can prove (2.8).

By Lemma 4 (1.1) holds and Theorem is proved.

§3. Proof of Corollary. For simplicity of writing the formulas
we prove Corollary only for positive z. Let ¢ (0<<e<1) be any given
number and put for k=0, +1, +£2, -.- and 7 (0<2h<e)

a(k)=exp (kh) and E,={a(k)<vVZ(w)<a(k+1D}.
Then clearly E.’s are disjoint sets in ¢(s., F,) and Up-_.. E,={Z(0)
#0}. Therefore we have, by Theorem,
lim P{X,/A,<2vZ, Z+0}
< > lim P{X,,/Angxa(k—i—l),Ek}—i-mZ P(E,)

Tk <mo no+oo =mo

ST @) j . {Im“)/ﬁ exp (—u? /2)du}dP+m§mP(Ek),

IA

k=—oo —o0

and in the same way
lim P(X,/A,<avZ, Z+0})

n—+ o0

> 3 (27;)—1/sz {f’“(’“’/ﬂ exp(_w/z)du}dp— ST P(E)).

k=—oco —o0 &l 2mo

Since xexp (—2*/2)<<1 for xéO, we have
za(k+1)/VZ
zj {j e Zexp(——u2/2)du}dP
k Ey

ra(k)/VZ
< ; IE (e"— V) (wa(k) |V Z) exp {—x*aX(k) /2Z}dP
<2 2hP(E,)<eP(Z+0)<e.

Since za(k)/VZ<x<zxa(k+1)/vZ on E, and we can take m, so large
that > 12m, P(E,)<e, Corollary is proved.
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