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36. Studies on Holonomic Quantum Fields. XIV

By Michio JiMBO and Tetsuji Miwa
Research Institute for Mathematical Sciences,
Kyoto University

(Communicated by Kosaku Yosipa, M. J. A.,, May 12, 1979)

The present article is a direct continuation of our preceding note
[1], where deformation theory was discussed in connection with the
Riemann-Hilbert problem for Euclidean Dirac equations. We are
particularly interested in the step function limit of the matrix M(&);
in other words the Green’s function w(x, 2’) is now required to be
multi-valued, having a monodromic property w(x, 2")—e**“w(x, x)
when continued around 2-codimensional submanifolds (“Bags”) B,
={f,=0,7,=0}. Formally the variational formula XIII-(7) [1] then
takes the form
(1) Lowe =3[ | avwenimLw, )

27
4.y)= %(ﬁf LW Y) — of (BTN a(¥))

with ()= .(y)+if..(y). However the meaning of (1) needs to be
made precise, since w(zx, 2’) has a regular singularity along B,. In this
note we perform this procedure in the 2-dimensional (massless and
massive) case, and show that the resulting equations are exactly those
obtained previously ((2.3.38) in [2] and (8.8.53) in [3]).

We use the following convention :

71=(1 1), 72=(Z. _z>, 32(3 a), 9=0,—i3,, D=0,+1id,.

1. The Riemann-Hilbert problem for the Euclidean Dirac equa-
tion in the sense of [1] has a special feature when the space dimension
is 2 and the mass vanishes. Let us restate the problem in this case.
As in [1] we denote by D* a bounded domain in X®™°=R?, and let D~
=X®c—D* dD*=I. We set z=(2'+1i2?)/2, 2=(2'—i2%)/2. Given a
real analytic N XN matrix M on I', we are to find a 2N X 2N matrix

(W, W,
w“(w3 w)
such that
(2) (i) —(9 a)w(z,z;z’,z’):a(x‘—x“)&(xz—x’z) (z,2' e T)
(ii) Iw(z,:?;z’,z’)[:O(-‘—iT) (2}—>o0)
(ii) w*,C;2,2)=ME,Dw¢,C;7,72) €& Del
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where B
w*,C*;2,2)= lim w(z,z;2,2).
D*3(2,8)-(, Q)
Now from (2)-(i) and (ii) we see immediately that w,=0, w,=0, and that

1 1

(3) Wy=———— Y(z,2’; ', M)
dr z—2'

Wy=— 1 Y, 25 T, ).
Ar z2—7%

Here Y(z,2’; I', M)=Y (2, ') is a holomorphic matrix defined on (Pt—1I")
X (Pt—1I") characterized by either of the following (with the abbrevi-
ation M()=M(, 0):

(4) Y(z,2)=1, Y, 2)=MQY(E,2) (el

4y Y(,2)=1, Y(2,0'")=Y(, I )HME) & el).

This is the ordinary Riemann-Hilbert problem corresponding to a con-
tinuous “monodromy matrix” M. If M is sufficiently close to 1 the
solution Y(z, 2’) exists uniquely, which is shown to be an invertible
matrix for any (z,2’). As a consequence of this and the characteristic
property (4) we obtain the simple relation

(5) Y(z,2)Y (2, 2)=Y(z, 2"), Y@,2)=Y(z, ).

Thanks to the “splitting property” (5) the variational formulas for
Y(z,2") simplify a great deal. By applying XIII-(7) [1] the M(%)-
preserving variation of Y(z, ') along a vector field 6o(¢)-9,46p(0) -0, is
given by
(6) 0Y(z, ’)

j dc-s @( )Y(z, £)-0M©- Y, 2)

—¢ 7=

oo=vera(gr) o= ()

denoting the tangential component of 3, (s is the arc length such that
41d¢/ds=1). Setting

(7) AR;O=Y(,(")-0.M©)-Y(C, 2

and applying (5) we may write (6) as

(®) o¥G, )= (5o [, 00011 )AG50) Y 2)

with

e (L oo~ o)

Likewise we rewrite the equations of Euclidean covariance XIII-
(23), (24) [1] and single out expressions for 9,Y,d,Y from them. The
results read

(9) 3,Y(z, z’)=(— 2}@ f ar Ak ;CC)).Y(z, )
=Y(z, z’)~( 1 f A(z 0 )
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(10) 3,Y(, z’)=( 1 J dz A(Z;O).Y(z, 2)
271 Jr 2

_ n(_ 1 A0

=Y ) (Zni fr d 2 —C )
Equations (8), (9) and (10) constitute an analogue of the total differential
equation (2.3.38) of [2] for the solution of the Riemann’s problem.
From (7)-(10) it is straightforward to calculate the variation of the
coefficient matrix A(z;%). We thus obtain the following continuous
monodromy version of the Schlesinger s equations (2.3.43) [2].

an 2,43 D= 1 j ax'— C [A(z; 0), A(z; 0]

— / —
a2 04 0= | dC’( %) ‘3’;’(C L 08 YAz 0, A )
271 Jr ¢ 22—
—2(0,000)-A(z; ©).

The original equations (2.3.38), (2.3.43) [2] are reproduced by pass-
ing to the limiting case where
(13) fgﬂ.M '— 270 3T La(s—s.).

v=1

In this case of the original Riemann’s problem, the solution has a
regular singularity at 2’ =a,=4(s,): Y(7,2)=0,(2,2") - (2'—a,) %, D,(z,2)
being holomorphic and invertible at 2’=a,. We have then

14 A c>=—2m( dc) 3 Y@, LY@, D, 55 —5)

=271 31 4,)- (Ei—)—l&(s——sy)

where
AR)=D(2,2)- (' —a,) (—L)2 —a,)D(2,2) " |,q,
=02, a)(—L)D(2,a,)".
If we write da,=dp(a,), (8)-(10) and (11), (12) reduce respectively to

15) 3Y(, zﬁ:(i( 1 _ 1 )A (z)6a> Yz, 2)
v=1 Z—a, z _

16) 3,Y(z, )= ( 3 A(z)) Y@, 2)

amn 9,Y(z,2)= (i} 4.(2) )-Y(z, 2)

18) 0.4,6)= T 14,@), A.@)] z_l

(19) A, () =— 3] [A,,(z),Au(zn(a“ﬂ*a“v — “‘mv)
v(3p) a,—a, Z—a,

where we have used

2mZA (z)5<< dC ) 5(8-8,,))=—Z(G,Bp)(C)-A(Z;C)-
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2. Here we shall reformulate the monodromy problem for the
massive Euclidean Dirac equation [3],[4] applying the variational
method developed in [1]. The notations used in this paragraph some-
times differs from those in [3], [4].

Let a, - - -, a, be distinet n points in X®™<, and let L, ---, L, be
N x N matrices. We set X'=X"°—{a,, ---,a,} and denote by X’ the
universal covering of X’. A 2N X 2N matrix valued function w(zx, «)
=w, 2 ;a, -+ -,0,; Ly, -+, L,) defined for (x, x’) € X' % X’ is called the
Green’s function for the Riemann data (a, ---,a,;L,, ---,L,) if it
satisfies the following :

(i) (—d,+mwx, 2)=d(x—a').

(ii) |w(z, 2')|=0(e-™*") when z tends to infinity in a finite sector.

(iii) For every «’'e X’ there exists 2N x2N matrices u,(z,2")
=u (2, %' ;0 -, 0,3 Ly -+, L,) and u,(x, 2)=uf(®,&'; 0, -+, 0,5 Ly,
.-+, L)) which are defined and real analytic at x=a, so that the local
expression of w(x, x’) at x=a, reads
(20) w(zx, 2")=2(x—a,)u,(z, 2’)+2(x—a,) " uk (e, ).

Here we have set
e

2t —1x’

5
The precise meaning of (i) is as follows: (—4,+mw(x, x') =08 (x(x)
— (") (if x is near 2’),=0 (otherwise). Here x: XX’ is the cover-
ing map.

For sufficiently small L, ---,L, the Green’s function for the
Riemann data (@, ---,a,; L,, - - -, L,) exists and it is unique. It is
also characterized by the following alternative.

(1Y w@, &)@ y+m)=8@—2).

(i) |w(z, )|=0( ™) (&'|>).

3y w, 2) =0, )2’ —a,)" >+ 0¥ (@, 2)2(@" —a,)>

(o' —a,|<1).

The variational formula for w(x, ') takes the following form.

21 M sw(x, 2)=3 v(x, a,) ~L,®( O) ‘u(a,, &)
47 v

z(x)=m and zZ(@)=m

—oz(a,)
E3 52(0/») % !’
+2v¥ @, a) L 0 ‘uk(a,, x').
Now assume that L, is non-singular (v=1, - - -, n), and set

_Arx 0 _An r-L):
@ W= a0 r(Ly)*)’ wi@)= 2" orw, 00",

@3) W, (@) = im’i(r(—Lv)-l, 0, ),

wi()= ——%(O, (L) Yus(a., &),
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where I'(L) is the gamma function. Then the solutions w,(x) and w*(x)
to the Euclidean Dirac equation are characterized by the exponential
decreasing property at |#|—>oo and the following local expansions at
=0,

24) W) =W, 1T — )0+ W, 1p(T—a e, + - -
+w>-’-<Ly+l/2(x_a;l)‘B;w+ Tty
(25) wi(x)= W, p(@—a)ph+ -

+w>EL”—l/2(x_aﬂ)5yv+wTL‘u+1/2(x~a/4)a/>lkv
Here we have set
— ?)L-llz(x)> * =<v;’f+1/z(x))
i) (vwzm) O )
v (x)=erI(mr) and vi(x)=e "I (mr) where z(x)=re”/2. «,, af,
B.. and 8% are N X N matrices independent of . w,(2’) and w}(2') are
characterized similarly. They have the following local expansions at
x'=a,.
(26) W) =08, W_1,1p(F — @)+, W 1,15 —a)+ -
+,B:waﬂ+1/2(x/—aﬂ)+ ttty
@) W)= KW@ — @) -
+5;“:7)?,,—1/2(%,—ap)+ai,wfﬂ+1/2(x/_afﬂ)+ Tty
where
W) =Wr,1@), =V @) and WF(@)=F_,:(x), —v¥,,(@)).
The variational equation now reads
Ar

n_ T P ’
28) ~7—n~5w(w, x)= Z w,(x) sin oL, w,(x')dz(a,)

E3 T 75k NS
+ Z. W (””)rn AL wk(x)oz(a,).

If N=1 (28) is equivalent to (8.3.53) in [3]. In [3] we have derived
(3.3.53) starting from the holonomic system (8.3.20) and the defor-
mation equation (3.3.24). Conversely, the Euclidean covariance of
w(z, ) and the variational equation (28) implies the holonomic system
for w(x)=w,(x), - - -, w,(x)) given below.

First we prepare several notations. We denote by «, 3, etc. the
nN X nN matrices (@.), =100 (Budup-t,ns €tc.  We set also L
= (0,,L,) 01,00 2(A) = (0,,2(0,) 01, @A 2(A) = (6,,2(a,)),,1,... nr
Notice that gg*=1 and w(x) /02(x) = w*(x) B, W*(x) = (wi (@), - - -, wF(x)).
Finally we set

Mp(a, D)w(x)=2(x—a) dw(@) _ e —a ow(x)

a2(x) 92(x)
+3( _ro—ve(L-g)

Then we have
29 (—d+m)w(x)=0,
M p(a,, LYw (), - - -, Mp(a,, L,)w,(x))
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=w(@)[2(4), al —0*(2)[2(4), 81,
oo 0w(®) _ o) 5
oW (x) = waz(x) 0z(A) 52@) 0Z(A)
—w(x)[02(A4), a] —W*(x)[62(A), 8].
Now the local expansion (24), (25) and the linear equations (29)

imply the following non linear equations for « and §.

(30 da=[02(4), aV]—ald2(A), a] — p*[2(A), ],
08=—pl62(A), al+[62(A), a*],
(3D a+[L, al=—[2(4), a®]+alz(A), al — p*[2(A), 8],

[L, Bl=Bl2(4), a]l +[2(4), a*]18.
Here g*=p4"", and «® and «* are to be eliminated by using the algebraic
relations (31). If N=1 (29)-(31) are equivalent to (3.3.20) and (3.3.24)
in [3].

References

[1] M. Jimbo and T. Miwa: Proc. Japan Acad. 55A, 115-120 (1979).

[2] M. Sato, T. Miwa, and M. Jimbo: Pub. RIMS. 15, 201-278 (1979).

[8] ——: (to appear in Publ. RIMS., 15(2) (1979)).

[4] ——: Proc. Japan Acad. 53A, 147-152 (1977) ; ibid. 54A, 221-225 (1978).
[6]1 ——: 1Ibid. 53A, 1-5 (1977).



