# 36. Studies on Holonomic Quantum Fields. XIV 

By Michio Jimbo and Tetsuji Mrwa Research Institute for Mathematical Sciences, Kyoto University<br>(Communicated by Kôsaku Yosida, m. J. A., May 12, 1979)

The present article is a direct continuation of our preceding note [1], where deformation theory was discussed in connection with the Riemann-Hilbert problem for Euclidean Dirac equations. We are particularly interested in the step function limit of the matrix $M(\xi)$; in other words the Green's function $w\left(x, x^{\prime}\right)$ is now required to be multi-valued, having a monodromic property $w\left(x, x^{\prime}\right) \mapsto e^{2 \pi i L_{\nu}} w\left(x, x^{\prime}\right)$ when continued around 2-codimensional submanifolds ("Bags") $B_{\nu}$ $=\left\{f_{\nu}=0, \bar{f}_{\nu}=0\right\}$. Formally the variational formula XIII-(7) [1] then takes the form

$$
\begin{align*}
\frac{1}{2 \pi i} \delta w\left(x, x^{\prime}\right) & =\sum_{\nu} \int_{X^{\mathrm{Euc}}} d^{s} y \cdot w(x, y) \Delta_{\nu}(y) L_{\nu} w\left(y, x^{\prime}\right)  \tag{1}\\
\Delta_{\nu}(y) & =\frac{1}{2 i}\left(\partial f_{\nu}(y) \delta \bar{f}_{\nu}(y)-\delta f_{\nu}(y) \partial \bar{f}_{\nu}(y)\right) \delta\left(f_{\nu 1}(y)\right) \delta\left(f_{\nu 2}(y)\right)
\end{align*}
$$

with $f_{\nu}(y)=f_{\nu 1}(y)+i f_{\nu 2}(y)$. However the meaning of (1) needs to be made precise, since $w\left(x, x^{\prime}\right)$ has a regular singularity along $B_{\nu}$. In this note we perform this procedure in the 2-dimensional (massless and massive) case, and show that the resulting equations are exactly those obtained previously ((2.3.38) in [2] and (3.3.53) in [3]).

We use the following convention:

$$
\gamma^{1}=\left(1_{1}^{1}\right), \gamma^{2}=\left(i^{-i}\right), \not \partial=\left(\bar{\partial}^{\partial}\right), \partial=\partial_{1}-i \partial_{2}, \bar{\partial}=\partial_{1}+i \partial_{2} .
$$

1. The Riemann-Hilbert problem for the Euclidean Dirac equation in the sense of [1] has a special feature when the space dimension is 2 and the mass vanishes. Let us restate the problem in this case. As in [1] we denote by $D^{+}$a bounded domain in $X^{\mathrm{Euc}}=\boldsymbol{R}^{2}$, and let $D^{-}$ $=X^{\mathrm{Euc}}-\bar{D}^{+}, \partial D^{+}=\Gamma$. We set $z=\left(x^{1}+i x^{2}\right) / 2, \bar{z}=\left(x^{1}-i x^{2}\right) / 2$. Given a real analytic $N \times N$ matrix $M$ on $\Gamma$, we are to find a $2 N \times 2 N$ matrix

$$
w=\left(\begin{array}{ll}
w_{1} & w_{2}  \tag{2}\\
w_{3} & w_{4}
\end{array}\right)
$$

such that
(i) $-\left(\bar{\partial}^{\partial}\right) w\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)=\delta\left(x^{1}-x^{\prime 1}\right) \delta\left(x^{2}-x^{\prime 2}\right) \quad\left(x, x^{\prime} \notin \Gamma\right)$
(ii) $\left|w\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)\right|=O\left(\frac{1}{|z|}\right) \quad(|z| \rightarrow \infty)$
(iii) $\quad w\left(\zeta^{+}, \bar{\zeta}^{+} ; z^{\prime}, \bar{z}^{\prime}\right)=M(\zeta, \bar{\zeta}) w\left(\zeta^{-}, \bar{\zeta}^{-} ; z^{\prime}, \bar{z}^{\prime}\right) \quad(\zeta, \bar{\zeta}) \in \Gamma$
where

$$
w\left(\zeta^{ \pm}, \bar{\zeta}^{ \pm} ; z^{\prime}, \bar{z}^{\prime}\right)=\lim _{D^{ \pm}(z, \bar{z}) \rightarrow(\zeta, \xi)} w\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right) .
$$

Now from (2)-(i) and (ii) we see immediately that $w_{1} \equiv 0, w_{4} \equiv 0$, and that

$$
\begin{align*}
& w_{2}=-\frac{1}{4 \pi} \frac{1}{z-z^{\prime}} Y\left(z, z^{\prime} ; \Gamma, M\right)  \tag{3}\\
& w_{3}=-\frac{1}{4 \pi} \frac{1}{\bar{z}-\bar{z}^{\prime}} \overline{Y\left(z, z^{\prime} ; \Gamma, \bar{M}\right) .}
\end{align*}
$$

Here $Y\left(z, z^{\prime} ; \Gamma, M\right)=Y\left(z, z^{\prime}\right)$ is a holomorphic matrix defined on $\left(\boldsymbol{P}_{C}^{1}-\Gamma\right)$ $\times\left(\boldsymbol{P}_{\boldsymbol{C}}^{1}-\Gamma\right)$ characterized by either of the following (with the abbreviation $M(\zeta)=M(\zeta, \bar{\zeta}))$ :
(4)

$$
Y(z, z)=1, Y\left(\zeta^{+}, z^{\prime}\right)=M(\zeta) Y\left(\zeta^{-}, z^{\prime}\right) \quad(\zeta \in \Gamma)
$$

$(4)^{\prime} \quad Y(z, z)=1, Y\left(z, \zeta^{\prime+}\right)=Y\left(z, \zeta^{\prime-}\right) M\left(\zeta^{\prime}\right)^{-1} \quad\left(\zeta^{\prime} \in \Gamma\right)$.
This is the ordinary Riemann-Hilbert problem corresponding to a continuous "monodromy matrix" $M$. If $M$ is sufficiently close to 1 the solution $Y\left(z, z^{\prime}\right)$ exists uniquely, which is shown to be an invertible matrix for any ( $z, z^{\prime}$ ). As a consequence of this and the characteristic property (4) we obtain the simple relation
( 5 )

$$
Y\left(z, z^{\prime}\right) Y\left(z^{\prime}, z^{\prime \prime}\right)=Y\left(z, z^{\prime \prime}\right), \quad Y\left(z^{\prime}, z\right)=Y\left(z, z^{\prime}\right)^{-1}
$$

Thanks to the "splitting property" (5) the variational formulas for $Y\left(z, z^{\prime}\right)$ simplify a great deal. By applying XIII-(7) [1] the $M(\zeta)-$ preserving variation of $Y\left(z, z^{\prime}\right)$ along a vector field $\delta \rho(\zeta) \cdot \partial_{\zeta}+\delta \bar{\rho}(\zeta) \cdot \bar{\partial}_{\xi}$ is given by
(6) $\delta Y\left(z, z^{\prime}\right)$

$$
=\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \cdot \delta \rho(\zeta)\left(\frac{1}{z-\zeta}-\frac{1}{z^{\prime}-\zeta}\right) Y\left(z, \zeta^{+}\right) \cdot \partial_{t} M(\zeta) \cdot Y\left(\zeta^{-}, z^{\prime}\right)
$$

with

$$
\partial_{t}=\partial_{\zeta}+4\left(\frac{d \bar{\zeta}}{d s}\right)^{2} \bar{\partial}_{\zeta}=\left(\frac{d \zeta}{d s}\right)^{-1} \frac{d}{d s}
$$

denoting the tangential component of $\partial_{\zeta}$ ( $s$ is the arc length such that $4|d \zeta / d s|^{2}=1$ ). Setting

$$
\begin{equation*}
A(z ; \zeta)=Y\left(z, \zeta^{+}\right) \cdot \partial_{t} M(\zeta) \cdot Y\left(\zeta^{-}, z\right) \tag{7}
\end{equation*}
$$

and applying (5) we may write (6) as

$$
\begin{align*}
\delta Y\left(z, z^{\prime}\right) & =\left(\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \cdot \delta \rho(\zeta)\left(\frac{1}{z-\zeta}-\frac{1}{z^{\prime}-\zeta}\right) A(z ; \zeta)\right) \cdot Y\left(z, z^{\prime}\right)  \tag{8}\\
& =Y\left(z, z^{\prime}\right) \cdot\left(\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \cdot \delta \rho(\zeta)\left(\frac{1}{z-\zeta}-\frac{1}{z^{\prime}-\zeta}\right) A\left(z^{\prime} ; \zeta\right)\right)
\end{align*}
$$

Likewise we rewrite the equations of Euclidean covariance XIII(23), (24) [1] and single out expressions for $\partial_{z} Y, \partial_{z^{\prime}} Y$ from them. The results read

$$
\begin{align*}
\partial_{z} Y\left(z, z^{\prime}\right) & =\left(-\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \frac{A(z ; \zeta)}{z-\zeta}\right) \cdot Y\left(z, z^{\prime}\right)  \tag{9}\\
& =Y\left(z, z^{\prime}\right) \cdot\left(-\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \frac{A\left(z^{\prime} ; \zeta\right)}{z-\zeta}\right)
\end{align*}
$$

$$
\begin{align*}
\partial_{z^{\prime}} Y\left(z, z^{\prime}\right) & =\left(\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \frac{A(z ; \zeta)}{z^{\prime}-\zeta}\right) \cdot Y\left(z, z^{\prime}\right)  \tag{10}\\
& =Y\left(z, z^{\prime}\right) \cdot\left(\frac{1}{2 \pi i} \int_{\Gamma} d \zeta \frac{A\left(z^{\prime} ; \zeta\right)}{z^{\prime}-\zeta}\right) .
\end{align*}
$$

Equations (8), (9) and (10) constitute an analogue of the total differential equation (2.3.38) of [2] for the solution of the Riemann's problem. From (7)-(10) it is straightforward to calculate the variation of the coefficient matrix $A(z ; \zeta)$. We thus obtain the following continuous monodromy version of the Schlesinger's equations (2.3.43) [2].

$$
\begin{equation*}
\partial_{z} A(z ; \zeta)=\frac{1}{2 \pi i} \int_{\Gamma} d \zeta^{\prime} \frac{1}{z-\zeta^{\prime}}\left[A(z ; \zeta), A\left(z ; \zeta^{\prime}\right)\right] \tag{11}
\end{equation*}
$$

(12)

$$
\begin{aligned}
\delta A(z, \zeta)= & -\frac{1}{2 \pi i} \int_{\Gamma} d \zeta^{\prime}\left(\frac{\delta \rho(\zeta)-\delta \rho\left(\zeta^{\prime}\right)}{\zeta-\zeta^{\prime}}-\frac{-\delta \rho\left(\zeta^{\prime}\right)}{z-\zeta^{\prime}}\right)\left[A(z ; \zeta), A\left(z ; \zeta^{\prime}\right)\right] \\
& -2\left(\partial_{t} \delta \rho\right)(\zeta) \cdot A(z ; \zeta)
\end{aligned}
$$

The original equations (2.3.38), (2.3.43) [2] are reproduced by passing to the limiting case where

$$
\begin{equation*}
\frac{d M}{d s} M^{-1}=-2 \pi i \sum_{\nu=1}^{n} L_{\nu} \delta\left(s-s_{\nu}\right) \tag{13}
\end{equation*}
$$

In this case of the original Riemann's problem, the solution has a regular singularity at $z^{\prime}=a_{\nu}=\zeta\left(s_{\nu}\right): Y\left(z, z^{\prime}\right)=\Phi_{\nu}\left(z, z^{\prime}\right) \cdot\left(z^{\prime}-a_{\nu}\right)^{-L_{\nu}}, \Phi_{\nu}\left(z, z^{\prime}\right)$ being holomorphic and invertible at $z^{\prime}=a_{\nu}$. We have then

$$
\begin{align*}
A(z ; \zeta) & =-\left.2 \pi i\left(\frac{d \zeta}{d s}\right)^{-1} \sum_{\nu=1}^{n}\left[Y\left(z, z^{\prime}\right) L_{\nu} Y\left(z^{\prime}, z\right)\right]\right|_{z^{\prime}=a_{\nu}} \cdot \delta\left(s-s_{\nu}\right)  \tag{14}\\
& =2 \pi i \sum_{\nu=1}^{n} A_{\nu}(z) \cdot\left(\frac{d \zeta}{d s}\right)^{-1} \delta\left(s-s_{\nu}\right)
\end{align*}
$$

where

$$
\begin{aligned}
A_{\nu}(z) & =\left.\Phi_{\nu}\left(z, z^{\prime}\right) \cdot\left(z^{\prime}-a_{\nu}\right)^{-L_{\nu}}\left(-L_{\nu}\right)\left(z^{\prime}-a_{\nu}\right)^{L_{\nu}} \Phi_{\nu}\left(z, z^{\prime}\right)^{-1}\right|_{z^{\prime}=a_{\nu}} \\
& =\Phi_{\nu}\left(z, a_{\nu}\right)\left(-L_{\nu}\right) \Phi_{\nu}\left(z, a_{\nu}\right)^{-1} .
\end{aligned}
$$

If we write $\delta a_{\nu}=\delta \rho\left(a_{\nu}\right)$, (8)-(10) and (11), (12) reduce respectively to

$$
\begin{gather*}
\delta Y\left(z, z^{\prime}\right)=\left(\sum_{\nu=1}^{n}\left(\frac{1}{z-a_{\nu}}-\frac{1}{z^{\prime}-a_{\nu}}\right) A_{\nu}(z) \delta a_{\nu}\right) \cdot Y\left(z, z^{\prime}\right)  \tag{15}\\
\partial_{z} Y\left(z, z^{\prime}\right)=\left(-\sum_{\nu=1}^{n} \frac{A_{\nu}(z)}{z-a_{\nu}}\right) \cdot Y\left(z, z^{\prime}\right)  \tag{16}\\
\partial_{z^{\prime}} Y\left(z, z^{\prime}\right)=\left(\sum_{\nu=1}^{n} \frac{A_{\nu}(z)}{z^{\prime}-a_{\nu}}\right) \cdot Y\left(z, z^{\prime}\right)  \tag{17}\\
\partial_{z} A_{\mu}(z)=\sum_{\nu(\neq \mu)}\left[A_{\mu}(z), A_{\nu}(z)\right] \frac{1}{z-a_{\nu}}  \tag{18}\\
\delta A_{\mu}(z)=-\sum_{\nu \neq \mu)}\left[A_{\mu}(z), A_{\nu}(z)\right]\left(\frac{\delta a_{\mu}-\delta a_{\nu}}{a_{\mu}-a_{\nu}}-\frac{-\delta a_{\nu}}{z-a_{\nu}}\right) \tag{19}
\end{gather*}
$$

where we have used

$$
2 \pi i \sum_{\mu=1}^{n} A_{\mu}(z) \delta\left(\left(\frac{d \zeta}{d s}\right)^{-1} \delta\left(s-s_{\mu}\right)\right)=-2\left(\partial_{t} \delta \rho\right)(\zeta) \cdot A(z ; \zeta) .
$$

2. Here we shall reformulate the monodromy problem for the massive Euclidean Dirac equation [3], [4] applying the variational method developed in [1]. The notations used in this paragraph sometimes differs from those in [3], [4].

Let $a_{1}, \cdots, a_{n}$ be distinct $n$ points in $X^{\text {Euc }}$, and let $L_{1}, \cdots, L_{n}$ be $N \times N$ matrices. We set $X^{\prime}=X^{\mathrm{Euc}}-\left\{a_{1}, \cdots, a_{n}\right\}$ and denote by $\tilde{X}^{\prime}$ the universal covering of $X^{\prime}$. A $2 N \times 2 N$ matrix valued function $w\left(x, x^{\prime}\right)$ $=w\left(x, x^{\prime} ; a_{1}, \cdots, a_{n} ; L_{1}, \cdots, L_{n}\right)$ defined for $\left(x, x^{\prime}\right) \in \tilde{X}^{\prime} \times \tilde{X}^{\prime}$ is called the Green's function for the Riemann data ( $a_{1}, \cdots, a_{n} ; L_{1}, \cdots, L_{n}$ ) if it satisfies the following :
(i) $\left(-\partial_{x}+m\right) w\left(x, x^{\prime}\right)=\delta^{2}\left(x-x^{\prime}\right)$.
(ii) $\left|w\left(x, x^{\prime}\right)\right|=O\left(e^{-m|x|}\right)$ when $x$ tends to infinity in a finite sector.
(iii) For every $x^{\prime} \in \tilde{X}^{\prime}$ there exists $2 N \times 2 N$ matrices $u_{\nu}\left(x, x^{\prime}\right)$ $=u_{\nu}\left(x, x^{\prime} ; a_{1}, \cdots, a_{n} ; L_{1}, \cdots, L_{n}\right)$ and $u_{\nu}\left(x, x^{\prime}\right)=u_{\nu}^{*}\left(x, x^{\prime} ; a_{1}, \cdots, a_{n} ; L_{1}\right.$, $\cdots, L_{n}$ ) which are defined and real analytic at $x=a_{\nu}$ so that the local expression of $w\left(x, x^{\prime}\right)$ at $x=a_{\nu}$ reads

$$
\begin{equation*}
w\left(x, x^{\prime}\right)=z\left(x-a_{\nu}\right)^{L_{\nu}} u_{\nu}\left(x, x^{\prime}\right)+\bar{z}\left(x-a_{\nu}\right)^{-L_{\nu}} u_{\nu}^{*}\left(x, x^{\prime}\right) . \tag{20}
\end{equation*}
$$

Here we have set

$$
z(x)=m \frac{x^{1}+i x^{2}}{2} \quad \text { and } \quad \bar{z}(x)=m \frac{x^{1}-i x^{2}}{2} .
$$

The precise meaning of (i) is as follows: $\left(-\partial_{x}+m\right) w\left(x, x^{\prime}\right)=\delta^{2}(\pi(x)$ $-\pi\left(x^{\prime}\right)$ ) (if $x$ is near $\left.x^{\prime}\right),=0$ (otherwise). Here $\pi: \tilde{X}^{\prime} \rightarrow X^{\prime}$ is the covering map.

For sufficiently small $L_{1}, \cdots, L_{n}$ the Green's function for the Riemann data ( $a_{1}, \cdots, a_{n} ; L_{1}, \cdots, L_{n}$ ) exists and it is unique. It is also characterized by the following alternative.
(i $)^{\prime} w\left(x, x^{\prime}\right)\left(\bar{\partial}_{x^{\prime}}+m\right)=\delta^{2}\left(x-x^{\prime}\right)$.
(ii $)^{\prime} \quad\left|w\left(x, x^{\prime}\right)\right|=O\left(e^{-m\left|x^{\prime}\right|}\right) \quad\left(\left|x^{\prime}\right| \rightarrow \infty\right)$.
(iii) $\quad w\left(x, x^{\prime}\right)=v_{\nu}\left(x, x^{\prime}\right) z\left(x^{\prime}-a_{\nu}\right)^{-L_{\nu}}+v_{\nu}^{*}\left(x, x^{\prime}\right) \bar{z}\left(x^{\prime}-a_{\nu}\right)^{L_{\nu}}$

$$
\left(\left|x^{\prime}-a_{\nu}\right|<1\right) .
$$

The variational formula for $w\left(x, x^{\prime}\right)$ takes the following form.

$$
\begin{align*}
\frac{m}{4 \pi} \delta w\left(x, x^{\prime}\right)= & \sum_{\nu} v_{\nu}\left(x, a_{\nu}\right) \cdot L_{\nu} \otimes\binom{0}{-\delta z\left(a_{\nu}\right)} \cdot u_{\nu}\left(a_{\nu}, x^{\prime}\right)  \tag{21}\\
& +\sum_{\nu} v_{\nu}^{*}\left(x, a_{\nu}\right) \cdot L_{\nu} \otimes\left(_{0} \delta \bar{z}\left(a_{\nu}\right)\right) \cdot u_{\nu}^{*}\left(a_{\nu}, x^{\prime}\right) .
\end{align*}
$$

Now assume that $L_{\nu}$ is non-singular ( $\nu=1, \cdots, n$ ), and set

$$
\begin{gather*}
w_{\nu}(x)=\frac{4 \pi}{m} v_{\nu}\left(x, a_{\nu}\right)\binom{0}{\Gamma\left(L_{\nu}\right)^{-1}}, \quad w_{\nu}^{*}(x)=\frac{4 \pi}{m} v_{\nu}^{*}\left(x, a_{\nu}\right)\binom{\Gamma\left(-L_{\nu}\right)^{-1}}{0} .  \tag{22}\\
\bar{w}_{\nu}\left(x^{\prime}\right)=\frac{4 \pi}{m}\left(\Gamma\left(-L_{\nu}\right)^{-1}, 0\right) u_{\nu}\left(a_{\nu}, x^{\prime}\right)  \tag{23}\\
\bar{w}_{\nu}^{*}\left(x^{\prime}\right)=-\frac{4 \pi}{m}\left(0, \Gamma\left(L_{\nu}\right)^{-1}\right) u_{\nu}^{*}\left(a_{\nu}, x^{\prime}\right)
\end{gather*}
$$

where $\Gamma(L)$ is the gamma function. Then the solutions $w_{\nu}(x)$ and $w_{\nu}^{*}(x)$ to the Euclidean Dirac equation are characterized by the exponential decreasing property at $|x| \rightarrow \infty$ and the following local expansions at $x=a_{\mu}$.

$$
\begin{align*}
w_{\nu}(x)= & w_{L_{\mu}-1 / 2}\left(x-a_{\mu}\right) \delta_{\mu \nu}+w_{L_{\mu+1 / 2}}\left(x-a_{\mu}\right) \alpha_{\mu \nu}+\cdots  \tag{24}\\
& +w_{-L_{\mu+1 / 2}}\left(x-a_{\mu}\right) \beta_{\mu \nu}+\cdots, \\
w_{\nu}^{*}(x)= & w_{L_{\mu+1 / 2}}\left(x-a_{\mu}\right) \beta_{\mu \nu}^{*}+\cdots  \tag{25}\\
& +w_{-L_{\mu-1 / 2}}^{*}\left(x-a_{\mu}\right) \delta_{\mu \nu}+w_{-L_{\mu+1 / 2}}^{*}\left(x-a_{\mu}\right) \alpha_{\mu \nu}^{*}+\cdots .
\end{align*}
$$

Here we have set

$$
w_{L}(x)=\binom{v_{L-1 / 2}(x)}{v_{L+1 / 2}(x)}, \quad w_{L}^{*}(x)=\binom{v_{L+1 / 2}^{*}(x)}{v_{L-1 / 2}^{*}(x)},
$$

$v_{L}(x)=e^{i L \theta} I_{L}(m r)$ and $v_{L}^{*}(x)=e^{-i L \theta} I_{L}(m r)$ where $z(x)=r e^{i \theta} / 2 . \quad \alpha_{\mu \nu}, \alpha_{\mu \nu}^{*}$, $\beta_{\mu \nu}$ and $\beta_{\mu \nu}^{*}$ are $N \times N$ matrices independent of $x . \quad \bar{w}_{\nu}\left(x^{\prime}\right)$ and $\bar{w}_{\nu}^{*}\left(x^{\prime}\right)$ are characterized similarly. They have the following local expansions at $x^{\prime}=a_{\mu}$.

$$
\begin{align*}
\bar{w}_{\nu}\left(x^{\prime}\right)= & \delta_{\nu \mu} \bar{w}_{-L_{\mu}-1 / 2}\left(x^{\prime}-a_{\mu}\right)+\alpha_{\nu \mu}^{\prime} \bar{w}_{-L_{\mu}+1 / 2}\left(x^{\prime}-a_{\mu}\right)+\cdots  \tag{26}\\
& +\beta_{\nu \mu}^{\prime} \bar{w}_{L_{\mu}+1 / 2}^{*}\left(x^{\prime}-a_{\mu}\right)+\cdots, \\
\bar{w}_{\nu}^{*}\left(x^{\prime}\right)= & \beta_{\nu \mu}^{*} \bar{w}_{-L_{\mu+1 / 2}}\left(x^{\prime}-a_{\mu}\right)+\cdots  \tag{27}\\
& +\delta_{\mu \nu} \bar{w}_{L_{\mu}-1 / 2}^{*}\left(x^{\prime}-a_{\mu}\right)+\alpha_{\nu \mu}^{* *} \bar{w}_{L_{\mu}+1 / 2}^{*}\left(x^{\prime}-a_{\mu}\right)+\cdots,
\end{align*}
$$

where

$$
\bar{w}_{L}(x)=\left(v_{L+1 / 2}(x),-v_{L-1 / 2}(x)\right) \quad \text { and } \quad \bar{w}_{L}^{*}(x)=\left(v_{L-1 / 2}^{*}(x),-v_{L+1 / 2}^{*}(x)\right) .
$$

The variational equation now reads

$$
\begin{align*}
\frac{4 \pi}{m} \delta w\left(x, x^{\prime}\right)= & \sum_{\nu} w_{\nu}(x) \frac{\pi}{\sin \pi L_{\nu}} \bar{w}_{\nu}\left(x^{\prime}\right) \delta z\left(a_{\nu}\right)  \tag{28}\\
& +\sum_{\nu} w_{\nu}^{*}(x) \frac{\pi}{\sin \pi L_{\nu}} \bar{w}_{\nu}^{*}\left(x^{\prime}\right) \delta \bar{z}\left(a_{\nu}\right)
\end{align*}
$$

If $N=1$ (28) is equivalent to (3.3.53) in [3]. In [3] we have derived (3.3.53) starting from the holonomic system (3.3.20) and the deformation equation (3.3.24). Conversely, the Euclidean covariance of $w\left(x, x^{\prime}\right)$ and the variational equation (28) implies the holonomic system for $\tilde{w}(x)=\left(w_{1}(x), \cdots, w_{n}(x)\right)$ given below.

First we prepare several notations. We denote by $\alpha, \beta$, etc. the $n N \times n N$ matrices $\left(\alpha_{\mu \nu}\right)_{\mu, \nu=1, \cdots, n}, \quad\left(\beta_{\mu \nu}\right)_{\mu, \nu=1, \cdots, n}$, etc. We set also $\mathcal{L}$ $=\left(\delta_{\nu \mu} L_{\nu}\right)_{\mu, \nu=1, \cdots, n}, \quad z(A)=\left(\delta_{\mu \nu} z\left(a_{\nu}\right)\right)_{\mu, \nu=1, \cdots, n} \quad$ and $\quad \bar{z}(A)=\left(\delta_{\mu \nu} \bar{z}\left(a_{\nu}\right)\right)_{\mu, \nu=1, \cdots, n}$. Notice that $\beta \beta^{*}=1$ and $\partial \tilde{w}(x) / \partial \bar{z}(x)=\tilde{w}^{*}(x) \beta, \tilde{w}^{*}(x)=\left(w_{1}^{*}(x), \cdots, w_{n}^{*}(x)\right)$. Finally we set

$$
\begin{aligned}
M_{F}(a, L) w(x)= & z(x-a) \frac{\partial w(x)}{\partial z(x)}-\bar{z}(x-a) \frac{\partial w(x)}{\partial \bar{z}(x)} \\
& +\frac{1}{2}\left(\begin{array}{c}
1 \\
\\
-1
\end{array}\right) w(x)-w(x)\left(L-\frac{1}{2}\right) .
\end{aligned}
$$

Then we have

$$
\begin{align*}
& (-\overparen{\partial}+m) \tilde{w}(x)=0  \tag{29}\\
& \left(M_{F}\left(a_{1}, L_{1}\right) w_{1}(x), \cdots, M_{F}\left(a_{n}, L_{n}\right) w_{n}(x)\right)
\end{align*}
$$

$$
\begin{aligned}
= & \tilde{w}(x)[z(A), \alpha]-\tilde{w}^{*}(x)[\bar{z}(A), \beta] \\
\delta \tilde{w}(x)= & -\frac{\partial \tilde{w}(x)}{\partial z(x)} \delta z(A)-\frac{\partial \tilde{w}(x)}{\partial \bar{z}(x)} \delta \bar{z}(A) \\
& -\tilde{w}(x)[\delta z(A), \alpha]-\tilde{w}^{*}(x)[\delta \bar{z}(A), \beta]
\end{aligned}
$$

Now the local expansion (24), (25) and the linear equations (29) imply the following non linear equations for $\alpha$ and $\beta$.

$$
\begin{align*}
& \delta \alpha=\left[\delta z(A), \alpha^{(1)}\right]-\alpha[\delta z(A), \alpha]-\beta^{*}[\delta \bar{z}(A), \beta]  \tag{30}\\
& \delta \beta=-\beta[\delta z(A), \alpha]+\left[\delta \bar{z}(A), \alpha^{*}\right] \beta \\
& \alpha+[\mathcal{L}, \alpha]=-\left[z(A), \alpha^{(1)}\right]+\alpha[z(A), \alpha]-\beta^{*}[\bar{z}(A), \beta],  \tag{31}\\
& \quad[\mathcal{L}, \beta]=\beta[z(A), \alpha]+\left[\bar{z}(A), \alpha^{*}\right] \beta .
\end{align*}
$$

Here $\beta^{*}=\beta^{-1}$, and $\alpha^{(1)}$ and $\alpha^{*}$ are to be eliminated by using the algebraic relations (31). If $N=1$ (29)-(31) are equivalent to (3.3.20) and (3.3.24) in [3].

## References

[1] M. Jimbo and T. Miwa: Proc. Japan Acad. 55A, 115-120 (1979).
[2] M. Sato, T. Miwa, and M. Jimbo: Pub. RIMS. 15, 201-278 (1979).
[3] ——: (to appear in Publ. RIMS., 15 (2) (1979)).
[ 4 ] - -: Proc. Japan Acad. 53A, 147-152 (1977) ; ibid. 54A, 221-225 (1978).
[5] -: Ibid. 53A, 1-5 (1977).

