## 33. G.Manifolds and G.Vector Fields with Isolated Zeros

By Katsuhiro Komiya
Department of Mathematics, Yamaguchi University
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1978)

Let G be a finite group. A G-manifold is a smooth manifold M together with a smooth G-action on M, and a (continuous) G-vector field on a G-manifold M is a continuous G-equivariant cross section of the tangent bundle  $\tau(M)$  of M. The object of this paper is to apply the equivariant homotopy theory of representation spheres [4] to remove isolated zeros of G-vector fields.

1. Preliminaries. Let M be a G-manifold. For any  $x \in M$ ,  $G_x$  denotes the isotropy subgroup at x. For any subgroup H of G, define  $M_H = \{x \in M \mid G_x = H\}$  and  $M^H = \{x \in M \mid H \subset G_x\}$ . Then  $M_H$  and  $M^H$  are submanifolds of M. Let  $s: M \to \tau(M)$  be a G-vector field on M. s induces a vector field  $s^H: M^H \to \tau(M^H)$  on  $M^H$  by restricting s on  $M^H$ .

Recall the index of a vector field s on M at an isolated zero  $z \in M$   $-\partial M$ . The index is denoted by ind (z; s), and defined to be the degree of the map

$$f\!=\!rac{darphi\circ s\circarphi^{-1}}{\|darphi\circ s\circarphi^{-1}\|}\!:S^{n-1}\!\! o\!S^{n-1}$$
,

where  $\varphi$  is a chart from a small neighborhood of z into  $\mathbb{R}^n$  taking z to 0, and  $n = \dim M$ . The map f describes the behavior of s near z. When M is a G-manifold and s is a G-vector field, we may take  $\varphi$  so as to be a  $G_z$ -equivariant chart from a  $G_z$ -invariant neighborhood of z into an orthogonal representation V of  $G_z$  taking z to 0. Moreover, the map f is a  $G_z$ -equivariant map from S(V) to itself, where S(V) is the unit sphere in V. For any subgroup H of  $G_z$ , z is also an isolated zero of  $s^H$ , and we see ind  $(z; s^H) = \deg f^H$ , where  $f^H : S(V)^H \to S(V)^H$  is the restriction of f on  $S(V)^H$ .

Convention. For the only map  $f: \phi \rightarrow \phi$  of an empty set, define deg f=1. So the index of a vector field on a 0-dim manifold at each point is 1. For a map  $f: S^0 \rightarrow S^0$ , define deg f=1 if f is the identity, deg f=0 if f maps  $S^0$  to one point, and deg f=-1 if f interchanges the two points of  $S^0$ .

2. Removing zeros. Theorem 1. Let G be a finite abelian group, and K a subgroup of G. Let s be a G-vector field on a G-manifold M. Let A be a connected component of  $M_K$ , and  $\{z_1, z_2, \dots, z_p\}$  the zeros of s on A. Assume that all  $z_i$ 's are isolated zeros of s and are off  $\partial M$ , and assume that for any subgroup H of K,

$$\sum_{i=1}^{p} \operatorname{ind}(z_i; s^H) = 0.$$

Then for any G-invariant neighborhood U of G(A) in M, we obtain a G-vector field t on M which has no more zero on G(A) and agrees with s on M-U and on  $\partial M$ .

To prove the theorem we need the following two lemmas.

Lemma 1. Let M be a G-manifold. (In this lemma G may be any compact Lie group.) Let  $x, y \in \text{Int } M$  be points in a connected component A of  $M_H$  for a subgroup H of G. Then there exists a G-equivariant isotopy  $F: M \times I \rightarrow M$  with  $F_0$  the identity and with  $F_1(G(x)) = G(y)$ . Moreover, F can be taken to be constant in  $t \in I$  outside a given G-invariant neighborhood in M of some compact subset in G(A).

**Proof.** Construct a G-equivariant isotopy  $f: G(x) \times I \to M$  with  $f_0$  the inclusion and with  $f_1(G(x)) = G(y)$ . By means of an equivariant analogy of the isotopy extension theorem, extend f to the desired G-equivariant isotopy F of M.

Lemma 2. Let G be a finite abelian group, and V an orthogonal representation of G containing trivial action. Let S(V) and D(V) be the unit sphere and the unit disc in V, respectively. Then a G-equivariant map  $f: S(V) \rightarrow S(V)$  can be G-equivariantly extended over D(V) if and only if deg  $f^H = 0$  for any subgroup H of G.

This lemma follows from the classification theorem of equivariant homotopy classes of equivariant maps of representation spheres [4].

Proof of Theorem 1. For some orthogonal representation V of K with dim  $V = \dim M$ , let D(V) be a small disc which is K-equivariantly embedded in M and which is centered at a point in A. Assume that D(V) is so small that

- (i)  $g(D(V)) \cap D(V) = \phi$  for any  $g \in G K$ ,
- (ii) D(V) is contained in U, and
- (iii) s has no zero on  $D(V)-D(V)\cap A$ .

We may use isotopies in Lemma 1 to push all zeros on G(A) into  $G(\operatorname{Int} D(V))$ . Precisely, there exists a G-equivariant diffeomorphism  $\alpha$  of M such that  $\alpha(G(\{z_1, \cdots, z_p\})) \subset G(\operatorname{Int} D(V))$  and  $\alpha = \operatorname{identity}$  on M-U and on  $\partial M$ . Consider a G-vector field  $s_1 = d\alpha \circ s \circ \alpha^{-1}$ . The zeros of  $s_1$  on G(A) are  $G(\{\alpha(z_1), \cdots, \alpha(z_p)\})$  which are contained in  $G(\operatorname{Int} D(V))$ , and  $s_1$  agrees with s on M-U and on  $\partial M$ . Let  $\{x_1, \cdots, x_q\} = \{z_i \mid \alpha(z_i) \in D(V)\}$ . Then p = aq for some integer a > 0, and for any subgroup H of K

$$\begin{array}{l} \sum_{i=1}^{q} \mathrm{ind} \; (\alpha(x_i) \; ; \; s_1^H) = \sum_{i=1}^{q} \mathrm{ind} \; (x_i \; ; \; s^H) \\ = 1/a \; \sum_{i=1}^{p} \mathrm{ind} \; (z_i \; ; \; s^H) \\ = 0. \end{array}$$

Since  $s_1$  has no zero on  $S(V) = \partial D(V)$ ,  $s_1$  induces a K-equivariant map  $f: S(V) \rightarrow S(V)$  which describes the behavior of  $s_1$  on S(V). We see that for any subgroup H of K

$$\deg f^H = \sum_{i=1}^q \operatorname{ind} (\alpha(x_i); s_1^H) = 0.$$

Then Lemma 2 implies that f extends to a K-equivariant map  $f_1: D(V) \rightarrow S(V)$ . (We note that the assumption on the indices of the zeros of s on A implies dim A > 0, and that V contains trivial action.)  $f_1$  induces a G-vector field on G(D(V)) which has no zero and agrees with  $s_1$  on G(S(V)). So we obtain a G-vector field t on M which has no zero on G(D(V)) and agrees with  $s_1$  outside G(Int D(V)). t is a required G-vector field on M.

3. Existence of G-vector fields with finite zeros.

Theorem 2. Let G be a finite group. Then any compact G-manifold M has a G-vector field s such that

- (i) s has only finite zeros,
- (ii) at all boundary points s is not zero and points inward, and
- (iii) if z is a zero of s and if  $K=G_z$ , then ind  $(z; s^H)=$  ind  $(z; s^K)$  for any subgroup H of K.

We may construct such a G-vector field by the same method developed in [1] and [2]. So we omit the proof.

4. Application. As an application of our result we obtain

Theorem 3. Let G be a finite abelian group of odd order. Let W be an n-dim compact G-manifold with  $\partial W = M_0 \cup M_1$ , where  $M_0$  and  $M_1$  are disjoint and are G-invariant (n-1)-dim closed submanifolds of  $\partial W$ . Then there exists a non-singular G-vector field on W which points inward on  $M_0$  and outward on  $M_1$  if and only if, for any subgroup H of G and for any connected component B of  $W^H$ ,

$$\chi(B) = \chi(B \cap M_0) = \chi(B \cap M_1),$$

where  $\chi(-)$  denotes Euler characteristic.

Note. Theorem 3 supplies a necessary and sufficient condition for  $M_0$  and  $M_1$  to be G-equivariantly Reinhart cobordant. See [3] for (non-equivariant) Reinhart cobordism. Also see [5] for  $\mathbb{Z}_2$ -equivariant Reinhart cobordism.

Proof of Theorem 3. To prove the necessity of the condition, let s be a non-singular G-vector field on W, and assume s points inward on  $M_0$  and outward on  $M_1$ . For any H and B,  $s^H \mid B$  is a non-singular vector field on B and points inward on  $\partial B \cap M_0$  and outward on  $\partial B \cap M_1$ . Then  $\chi(B) = \chi(B \cap M_0) = \chi(B \cap M_1)$  follows from [3].

Next to prove the sufficiency, let  $P=M_0\times[0,1]$  be a G-equivariant collar of  $M_0$  in W, and let  $Q=W-M_0\times[0,1)$ . By Theorem 2, there exist G-vector fields  $s_1$  on P and  $s_2$  on Q such that

- (i)  $s_i$  (i=1,2) has finite zeros,
- (ii)  $s_1$  points inward on  $\partial P$  and  $s_2$  points outward on  $\partial Q$ , and
- (iii) if z is a zero of  $s_i$  and if  $K = G_z$ ,

then ind  $(z; s_i^H) = \text{ind } (z; s_i^K)$  for any subgroup H of K. (Note: Theorem 2 implies at once ind  $(z; (-s_2)^H) = \text{ind } (z; (-s_2)^K)$ . However, in our

situation where G is a finite abelian group of odd order, ind  $(z; (-s_2)^H)$  = ind  $(z; (-s_2)^K)$  implies ind  $(z; s_2^H)$  = ind  $(z; s_2^K)$ .)  $s_1$  and  $s_2$  induces a G-vector field s on W which points inward on  $M_0$  and outward on  $M_1$ . Moreover, for any subgroup K of G and for any connected component A of  $W_K$ , we may show that if  $\chi(B) = \chi(B \cap M_0) = \chi(B \cap M_1)$  for any  $B \subset W^H$  then the zeros of s on A satisfy the assumption in Theorem 1. Then we obtain a non-singular G-vector field on W which points inward on  $M_0$  and outward on  $M_1$ .

## References

- [1] H. Hauschild: Ein Hopfscher Satz über äquivariante Vektorfelder (unpublished).
- [2] K. Komiya: A necessary and sufficient condition for the existence of non-singular G-vector fields on G-manifolds. Osaka J. Math., 13, 537-546 (1976).
- [3] B. L. Reinhart: Cobordism and the Euler number. Topology, 2, 173-177 (1963).
- [4] R. L. Rubinsztein: On the equivariant homotopy of spheres. Dissertationes Math. (Rozprawy Mat.), 134 (1976).
- [5] R. E. Stong: Tangential Cobordism. Math. Ann., 216, 181-196 (1975).