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(Communicated by Késaku YosipA, M. J. A., May 12, 1978)

Let G be a finite group. A G-manifold is a smooth manifold M
together with a smooth G-action on M, and a (continuous) G-vector
field on a G-manifold M is a continuous G-equivariant cross section of
the tangent bundle (M) of M. The object of this paper is to apply
the equivariant homotopy theory of representation spheres [4] to re-
move isolated zeros of G-vector fields.

1. Preliminaries. Let M be a G-manifold. For any xe M, G,
denotes the isotropy subgroup at x. For any subgroup H of G, define
My={xeM|G,=H} and M¥={x e M|HCG,}. Then My and M¥ are
submanifolds of M. Let s: M—z(M) be a G-vector field on M. s in-
duces a vector field s¥: MZ—c(M*%) on M¥ by restricting s on MZ.

Recall the index of a vector field s on M at an isolated zero ze M
—oM. Theindex is denoted by ind (z; s), and defined to be the degree
of the map

= _dposog™ . Sn-1,8n-1,
[dposeo™|

where ¢ is a chart from a small neighborhood of z into R" taking z to
0, and n=dim M. The map f describes the behavior of s near z.
When M is a G-manifold and s is a G-vector field, we may take ¢ so as
to be a G,-equivariant chart from a G,-invariant neighborhood of z into
an orthogonal representation V of G, taking z to 0. Moreover, the
map f is a G,-equivariant map from S(V) to itself, where S(V) is the
unit spherein V. For any subgroup H of G,, z is also an isolated zero
of s#, and we see ind (z; s¥)=deg ¥, where fZ: S(V)2-S(V)¥ is the
restriction of f on S(V)%.

Convention. For the only map f:¢—¢ of an empty set, define
deg f=1. So the index of a vector field on a 0-dim manifold at each
point is 1. For a map f:S°—S’ define deg f=1if f is the identity,
deg f=0 if f maps S° to one point, and deg f=—1 if f interchanges
the two points of S°.

2. Removing zeros. Theorem 1. Let G be a finite abelian
group, and K a subgroup of G. Let s be a G-vector field on a G-man-
ifold M. Let A be a connected component of My, and {z,, 2, - -+, 2}
the zeros of s on A. Assume that all z;’s are tsolated zeros of s and
are off dM, and assume that for any subgroup H of K,
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>2,ind (2,5 s%)=0.
Then for any G-invariant neighborhood U of G(A) in M, we obtain a
G-vector field t on M which has no more zero on G(A) and agrees with
son M—U and on oM.

To prove the theorem we need the following two lemmas.

Lemma 1. Let M be a G-manifold. (In this lemma G may be
any compact Lie group.) Let x,yeIntM be points in a connected
component A of My for a subgroup H of G. Then there exists a G-
equivariant isotopy F : M X I—-M with F, the identity and with F,(G(x))
=GW). Moreover, F' can be taken to be constant in t el outside o
given G-invariont neighborhood in M of some compact subset in G(A).

Proof. Construct a G-equivariant isotopy f: G(x) X I—M with f,
the inclusion and with f,(G(x))=G(). By means of an equivariant
analogy of the isotopy extension theorem, extend f to the desired G-
equivariant isotopy F of M.

Lemma 2. Let G be a finite abelian group, and V an orthogonal
representation of G containing trivial action. Let S(V) and D(V) be
the unit sphere and the unit disc in V, respectively. Then a G-equiv-
ariant map f: S(V)—S(V) can be G-equivariantly extended over D(V)
if and only if deg fZ=0 for any subgroup H of G.

This lemma follows from the classification theorem of equivariant
homotopy classes of equivariant maps of representation spheres [4].

Proof of Theorem 1. For some orthogonal representation V of
K with dim V=dim M, let D(V) be a small disc which is K-equivariant-
ly embedded in M and which is centered at a pointin A. Assume that
D(V) is so small that

(i) gDWHYNDV)=¢ for any g G—K,

(ii) D(V) is contained in U, and

(iii) s has no zero on D(V)—D(V)NA.

We may use isotopies in Lemma 1 to push all zeros on G(A) into
G(Int D(V)). Precisely, there exists a G-equivariant diffeomorphism
a of M such that a«(G({z,, - - -, 2,})) CG(Int D(V)) and a=identity on M
—U and on aM. Consider a G-vector field s,=daosoa. The
zeros of s, on G(A) are G({a(z), - -+, a(z,)}) which are contained in
G(Int D(V)), and s, agrees with son M—U and on oM. Let {z, .-,
z}={2;|a(z;) e D(V)}. Then p=aq for some integer ¢ >0, and for any
subgroup H of K
¢ ind (x5 s =2 %, ind (w;; s%)
=1/a Y7, ind (2;; s%)

Since s, has no zero on S(V)=aD(V), s, induces a K-equivariant map
f 1+ S(V)—S(V) which describes the behavior of s, on S(V). We see that
for any subgroup H of K
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deg fH=3%,ind (a(z,) ; si')=0.

Then Lemma 2 implies that f extends to a K-equivariant map
f1: D(V)—=S(V). (We note that the assumption on the indices of the
zeros of s on A implies dim A >0, and that V contains trivial action.)
/1 induces a G-vector field on G(D(V)) which has no zero and agrees
with s, on G(S(V)). So we obtain a G-vector field ¢ on M which has
no zero on G(D(V)) and agrees with s, outside G(Int D(V)). ¢ is a re-
quired G-vector field on M.

3. Existence of G-vector fields with finite zeros.

Theorem 2. Let G be a finite group. Then any compact G-
manifold M has a G-vector field s such that

(i) s has only finite zeros,

(ii) at all boundary points s is not zero and points tnward, and

(iii) if z is @ zero of s and if K=@,, then ind (z; s¥)=ind (z; s¥)
for any subgroup H of K.

We may construct such a G-vector field by the same method de-
veloped in [1] and [2]. So we omit the proof.

4. Application. As an application of our result we obtain

Theorem 3. Let G be a finite abelian group of odd order. Let
W be an n-dim compact G-manifold with oW =M,UM,, where M, and
M, are disjoint and are G-invariant (n—1)-dim closed submanifolds of
OW. Then there exists a non-singular G-vector field on W which points
inward on M, and outward on M, if and only if, for any subgroup H
of G and for any connected component B of WE,

1(B)=y(BNM)=yBNM),
where y(-) denotes Euler characteristic.

Note. Theorem 3 supplies a necessary and sufficient condition
for M, and M, to be G-equivariantly Reinhart cobordant. See [3] for
(non-equivariant) Reinhart cobordism. Also see [5] for Z,-equivariant
Reinhart cobordism.

Proof of Theorem 3. To prove the necessity of the condition,
let s be a non-singular G-vector field on W, and assume s points in-
ward on M, and outward on M,. For any H and B, s¥|B is a non-
singular vector field on B and points inward on 9B N M, and outward
on dBNM,. Then y(B)=y(BNM)=y(BNM,) follows from [3].

Next to prove the sufficiency, let P=M,x [0, 1] be a G-equivariant
collar of M, in W, and let Q=W —-M,%x[0,1). By Theorem 2, there
exist G-vector fields s, on P and s, on @ such that

(i) s;(t=1.2) has finite zeros,

(ii) s, points inward on 9P and s, points outward on 4Q, and

(iii) if z isa zero of s; and if K=G,,
then ind (z; s¥)=ind (z; s¥) for any subgroup H of K. (Note: Theorem
2 implies at once ind (z; (—s,)®)=ind (z; (—s)¥). However, in our
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situation where G is a finite abelian group of odd order, ind (z; (—s,)%)
=ind (z; (—s,)¥) implies ind (z; sf)=ind (z; s¥).) s, and s, induces
a G-vector field s on W which points inward on M, and outward on
M,. Moreover, for any subgroup K of G and for any connected com-
ponent A of Wg, we may show that if y(B)=y(BNM)=xy(BNM,) for
any BC WX then the zeros of s on A satisfy the assumption in Theo-
rem 1. Then we obtain a non-singular G-vector field on W which
points inward on M, and outward on M,.
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