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In this series of papers [1][3] it has been realized that a deep
connection exists between the deformation theory of linear differential
equations and field operators belonging to the Clifford group. The aim
of the present article is to study the Riemann-Hilbert problem on the
complex sphere P [5], [6] from the above standpoint. In the case where
the branch points a,, ..., a, c all lie on the real line P, we shall show
in 2 the equivalence of (i) finding a multi-valued analytic function
with a prescribed monodromy property, and (ii) constructing a field
operator which induces a specified rotation. We then give a canonical
scheme of the latter.

We follow the same notation as in [1] [3] unless otherwise stated
explicitly.

1o Let W, W. be orthogonal vector spaces equipped with the in-
ner product <, w, <, }. Their tensor product W--W(R)W2 is natu-
rally endowed with an orthogonal structure by setting <w(R)w2,

w},. (w, }(w, w e W, w., w’ e W). We denote by (resp.
) the element of Home (W, W*) (resp. Home (W, W*)) which defines
the inner product <, }w (resp. <, }wJ, i.e. (w)(w’)= <w, w’},, (wJ(w)

w} (,----1, 2). Also a -norm on A(W) induces one on A(W);
namely let e Home (W, W*) be an element such that /--. Then
=(R)2 e Home (W, W*) clearly satisfies +t= [3], [4].

Now let W-{w(x)} be the orthogonal space of functions on R

equippedwith the inner product w, w’)-- dxw(x)w’(x) (w’, w).

Let (x)=/ d__u/O+i dk() be the free termion operator in one
d

dimensional space, where ,/()=,k(-), () (>O) denotes creation
and annihilation operator, respectively [1]. By identifying w e Wwith

gw()go(x) we regard go() as an element of W G(W).

Denoting by :t the element of Home (W, W*) corresponding to the
holonomie decomposition into the above creation and annihilation oper-

1 --i_1 i <(x)4x(x’)}t, 2x x’ i0
ators, we have <(x)(x’)}

2z x--’+i0’
and [(x), (x’)]+=<4x(x), (x’),,=(x--x’). Notice that t and
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f are projection operators onto the space of boundary values of
holomorphic functions on the upper nd lower half plane, respectively.

As W we take C and choose a basis e such that e, e}w--
(i, ]=1, ..., m). For w e W we set w()--w(R)e. In what follows the
norm Nr and the vacuum expectation value ( on A(W)=A(W@W)
shall refer to =@ explained above.

2. LetP denote the complex projective line. We fix a coordinate
and set P--{}=D+ U R U D_, D=(Ira x0}. Suppose we are given
n points a. a on R and n matrices M, .,M e GL (m, C) arbi-
trarily. The Riemann-Hilbert problem amounts to finding m m ma-
trices Y(x) of holomorphic unctions on D, respectively, with the
properties (i) Y(x) has at most regular singularities at a, ..., a, ,
and (ii) their boundary values are related through
( 1 ) Y_(x--iO)= Y+(x + iO)M(x), x e R--{a, ..., a}
where M(x)=(m(x))=MM+...M or a_xa (,=l,...,n, a0
=-), =1 for a<x.

First assume M 0 (m, C) (= 1, ..., n) and consider the rotation
T in W=WW2 given by
( 2 ) (Tw())(x)== w()(x)m(x), w e W, ]= 1, ..., m.

Suppose that T be induced by an even element e G(W) of the form
Nr () exp (p / 2)

( 3 )
p= dxdx’r,(x, x’)(*)(x)()(x’).

i,j=l

In other words we assume the following commutation relation with

S
( 4 ) ((x)=?. (’(x)m(x), ]= 1, ..., m.
For i,]=1, ...,m and x0>a we set

( 5 ) y+(Xo x)= --2ui(xo--x)<()(Xo)()(x)>
y_i(xo x) 2ui(x0-- x)<()(Xo)()(x)>.

Applying (23)(26) in [2] we have

y(x0 x)

(6) =$+2=i(Xo_X)yy::dxdxi ir(x,x)
Xo--x+ iO 2u x--x iO

which implies that as a function of x Y(x0; x)=(y(Xo; x)) is analyti-
cally prolongable to D, respectively, and Yl=o=l. Moreover from
(4) we see that they also satisfy (1).

Conversely we may construct an operator satisfying (4) once we
know matrices Y(x)=(y(x)) of holomorphic functions on D with
the monodromy property (1). Recall that the condition T=T is equi-
valently stated in terms of p e A(W) as [3], [4]
( 7 ) p(T+ t)= T-- 1

where we have used the identification A(W)WWHomc (W*, W).
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Lemma. Let ) e Homc (W, W) be invertible operators such that

Then p’=(Z--Z:)(e-,Z+ + e-,Z_)e- e Home (W*, W) satisfies (7). If
in addition

1then --p’, and hence p-----ff(p- e A(W), satisfies (7).

If we take as the multiplication operators w()(x),?= w()(x).
y’(x), it is easy to see that all the conditions (8), (8)’ are tulfilled.
Notice that such Y’(x) and p are not uniquely determined by the rota-
tion T.

In the case where the monodromy matrices M e GL (m, C) are not
necessarily orthogonal, we let W=C and choose a basis e, e* such
that (e, e)=O, (e*, e)}=0 and (e, e]}= (i, ]= 1, ..., m). Set w

=w(R)et, w*()=w(R)e* (we W). Then 2r=(M-_ tM:)eSO-_ (W), and

( 9 ) (Tw())(x) ,=- w()(x)m(x), (Tw*()(x) ,=l w*()(x)m(x)
defines a rotation in W=W(R)W, where (m(x))=tM(x)-. Hence the
general case is reduced to the case ot orthogonal monodromy of double
size. In particular we note that

(10) y+(Xo x)= --2zi(Xo--X)(*()(Xo)()(x)o}
y_(Xo x) --2i(x0--

give functions with the correct monodromy property (1).
3. In the case n= 1 the Riemann-Hilbert problem admits elemen-

tary solutions; namely we may take Y+/-(x)=(x--a+_iO)-’, where L is
an m m matrix satisfying e’" M. From the lemma, the correspond-
ing operator =o(a L), subject to the normalization @} 1, is explicit-
ly given by

Nr (o(a; L)) exp (p(a L) /2)(11)
where

(12)

-p(a L)-- dxdx’r(x--a, x’--a L)()(x)*()(x’)
tj=l

E du du%;(u, u’;
g,j=l

R(x, x’ L)=(r(x, x’ L))

=((z +i0)-(z-i0) ")
x’x-- +i0

(x’--iO)-
1 --i (x’ + iO)-r)+ 2- x--x’--iO

R(u, u’; L)=((u, u’; L))
--i=--2 sin L.(u--io)-r//(u’--iO) r//

u+ u’--i0
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Now we proceed to construction o a canonical operator which
induces the rotation (9). Choose L so that e’=M (,= 1, ..., n)and
set
(13) 9=Qp(a L1).. "9(an Ln)-9(a L1)’" (p(an L).
Applying the product ormula (3.7) in [3] we see that its norm takes
the orm

Nr (9)=exp (p/2)

dxdx’e,,(x, x’)()(x)*()(x’).
#,,=1 i,j=l

Here ,(x, x’)--(9,,(x, x’)) denotes the (Z, u)-th block of mnXmn ma-
trix

(15) /(x, x’)=+ dx(1-RA)-(x, x)R(x, x’)

where
(1--RA)-(x, x’)-3(x-x’). 1

(16) + . dz_R(x, z)A(x, x)

R(_, x_JA(_, x’)
R(x, x’)=(,R(-a, x’- L))

(17)
A(x, x’)--(A,(x, x’)), A,(x, x’)= x--x’+__iO

0 ([-)
The infinite series (16) is convergent for sufficiently small
=(,,, t/,,1)1/ (,=1, ...,n). It is clear that T=T(,;,)...
--T.

Also we note that Crom (1), (4), (12) in [4] the logarithmic deriva-
rive o the r-unction r(a, ..., a)=((al; LJ...(a ;L)} is given by

dlog(a,...,a)=2i-- dxdx.dx3trace(LsinL
7t7 p,=l(18)

X (x--%):z,’-(1--AR);l(x, x.)A,(x., x)(x--%)_,,-da,),
where x 0 (x 0), --Ix (x 0).

4. The local behavior o Y+(xo;X) defined in (10)are known rom
(12), (15) and (16). For x0, x e C--(--c, a] set

Y(xo x)

2 Xo--x 2u x2-- x
We have then Y(x0 x) Y(xo+ iO x +_ iO). Making use of (12) we find
that in a neighborhood o x-a
(20) Y+(xo; x)--q(Xo x)(x--a/iO)-where

P(x0 x)
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Xo-- xl z
) ((X._+iO)L i _(X2____iO)L I__. --i )2r X2- X + iO 2 X--X-iO

is prolongable to a single-valued holomorphic matrix at x=a. On the
other hand, we have for any @0
(22) ]Y(x0 x)]=O(Jx]) (x], 60<arg
The monodromy property (1) and (22) guarantee that x= is also a
regular singularity o Y(x0; x). Hence we may write as
(23) Y(xo x)=(x0 x). x
with (x0; x) a single-valued holomorphic matrix at x=. Set y(x)
=det Y(x0; x) = (x-a)t’. Then y(x) is single-valued and holo-
morphic everywhere in the finite x-plane. At x-- it behaves like
f(x). x (+=), where f(x) denotes a holomorphic unction at
x . Since y(x) is a polynomial, trace (L +LL) is a non-negative
integer. From this and (22) it ollows that, for sufficiently small
(,= 1, ., n), L coincides with (2i)- log M, where MMM. M
and the branch o log is chosen so that log 1=0. We thus conclude
trace (L+L,)=0, and y(x)=y(Xo) is a non-zero constant. In par-
ticular det (x0; a)0 (,=1,...,n), det (x0; )0.

Summing up, Y(x0; x) is a solution to the Riemann-Hilbert problem
such that it has pre-assigned exponents L at x=a (,= 1, ..., n), det Y
0 or xa,...,a, and Y[=o=l. It then ollows [5][6] that
Y(x0; x) satisfies a Fuchsian system of linear differential equations

(4) dgdz z-aA. +... +z-
where
(2) A=A(, a, ..., e)- --(0 a)L(, e)- (=1, ...,
are m xm matrices independent of . emark that since the mono-
dromy representation of (24) is independent of e,..., a, A should
satisfy, for fixed 0, the Sehlesinger’s equations [7]"

() X0
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