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1. Introduction. In the. preceding paper [1] we extended Rengel’s
results ([4] or [3]) to the case of circumferentially mean p-valent func-
tions. In this paper we shall treat the case of areally mean p-valent
functions defined as follows.

Let n(R, ) denote the number of roots of the equation f(z)--w
Re in a domain D. If for a certain positive, integer p,

(1.1) n(R, @)dq RdR<_pzR (O<_R < c),

then f(z) is called to be areally mean p-valent (c. [2]).
As defined in [1], D1, D2, D3, D4, D and D6 denote, the n-ply connect-

ed, representative domains of the ollowing types respectively.

Dx" n annulus, (0)rlzlr (c) with (n--2) circular arc
slits centered at the origin.

D" n annulus, (0) rlzlr (c) with (n--2) radial slits
emanating rom the origin.

the unit circle with (n--l) circular arc slits centered at theD3
origin.

D4:
origin.

D:
origin.

D6:
2.

the unit circle with (n--l) radial slits emanating rom the

the whole plane with n circular arc slits centered at the

the whole plane with n radial slits emanating rom the origin.

We shall first quote Hayman’s result (p. 33 in [2]).
Lemma. Let f(z)--Ret be single-valued, regular, areally mean

p-valent in a domain D and n(R, ) denote the quantity defined above.
Let Rl--in If(z)l and R----sup If(z)l. Then we have

zD zD

(2.1)
\p(R) - n(R, )

Hereafter we shall derive the results in this paper by the method
quite similar to [1].
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Theorem 2.1.
p-valent in D1 and satisfy the condition

Id (C’lzl-r (rrr.)),arg f(z) l_2zp
C

where the circle C does not contain any circular slit of DI.
have the following inequality"

(2.2) plog r2 <log R2 1

Proof. As shown in [1],

(.a

(2.4)

Let f(z) be single-valued, regular, areally mean

Then we

R-in If(z)l, R2-sup
zD1 zD1

prdrd > log p- z-rei
1 r f(z)

(2z); p2rdrd=;; n(R, q) dRdq
D R

(z re, w Re, D the image, domain o D).
On the other hand

n(R, ).dRdq=

2z dR.
R R

Therefore, by means o Lemma we have

log log(2.5)
2 r 2

Theorem 2.2. Let f(z) be single-valued, regular, and areally
mean p-valent in D. Let M={y} denote the family of the segments
r]zr, arg z= (02) which do not contain any radial slit of
D. Then we have the following inequality.

((2.6) p log + log A

A- inf dr, R=inf f(z) ], Rsup f(z)

Proof. As shown in [1],
A(27) II prdrd (p_ 1 f’(z) l)"2 log (r/r) f(z)

On the other hand, by means o Lemma, we have

(2.8) II prdrd(log + 1

. Next we shall show some applications o Theorem 2.1 and
Theorem 2.2.

Theorem .1. Let f(z) be single-valued, regular, areally mean
p-valent, and bounded, that is, f(z) l in D. Moreover let

(3.1) [ dargf(z)=0 (,=1,2, ..., n--l)
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along every curve in D which is sufficiently near to the slit S (
=1, 2,..., n-l) and encloses it simply, and f(z) be expanded in the
neighborhood of the origin as follows"

f(z) az - (p+ Zp+ -Then we have
(3.2) ]a ]_ e/.

Proof. Let 3(e) denote the nearest distance from the origin to the
image o a small circle Iz]=s by w--f(z). Then we have

(3.3) lim (e)=la[.
-*0 sP

By means of the same reasoning as shown in [1] and Theorem 2.1, we
have

(3.4) p log--1
_

log I .+ _1.
e () 2

we can derive ]a]_e/ from (3.3) and (3.4).
Theorem :.2. Let f(z) be single-valued, regular, areally mean

p-valent and bounded, that is, ]f(z)]l in D. Let, in a neighborhood

of the origin,

Then we have
f(z)--azE-a+zE+ zT

(3.5) lal>_me-/ (m=min lf(z)l).
Proof. Let 3(e) or 3*(D denote respectively the longest or nearest

distance rom the origin to the image o Izl= by w--f(z). Then, by
means of the. same reasoning as shown in [1] and Theorem 2.2, we
have

(3.6) log ;:- gp log .,.. + log --.
On the other hand

3"()(3.7) lim (e) lim --]a [.
0 P 0 sP

Hence, by letting e tend to 0 and making use of (3.6) and (3.7), we have
m 1(3.8) 0_>log
lal 2

4. Lastly we shall state the results similar to Theorem 3.1 and
Theorem 3.2 in the cases of D and D which can be also proved by the
method indicated in [1].

Theorem 4.1. Let f(z) be single-valued, regular, except for the
pole at c, areally mean p-valent in D and expanded in a neighborhood

of the origin
f(z)--z +a+z++

Moreover let
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d f(z)=O (,=1,2, n)arg

for every simply closed curve which is sufficiently near to each
circular arc slit S and encloses S simply. Then we have

(4 1) lim f(z)

Theorem 4.2. Let f(z) be single-valued, regular, except at z-
areally mean p-valent in D and let in a neighborhood of z--c,

f(z)--z bnz (b0--1).
=0

Moreover let in a neighborhood of the origin

f(z)--az +a+z+ +....
Then we have
(4.2) lal>_e-/.
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