20. On Multivalent Functions in Multiply Connected Domains. II

By Hitoshi Abe
Department of Applied Mathematics, Faculty of Engineering, Ehime University (Communicated by Kôsaku Yosida, m. J. A., May 12, 1977)

1. Introduction. In the preceding paper [1] we extended Rengel's results ([4] or [3]) to the case of circumferentially mean p-valent functions. In this paper we shall treat the case of areally mean p-valent functions defined as follows.

Let $n(R, \Phi)$ denote the number of roots of the equation $f(z)=w$ $=\mathrm{Re}^{i \Phi}$ in a domain D. If for a certain positive integer p,

$$
\begin{equation*}
\int_{0}^{R}\left(\int_{0}^{2 \pi} n(R, \Phi) d \Phi\right) R d R \leq p \pi R^{2} \quad(0 \leq R<\infty) \tag{1.1}
\end{equation*}
$$

then $f(z)$ is called to be areally mean p-valent (cf. [2]).
As defined in [1], $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$ and D_{6} denote the n-ply connected, representative domains of the following types respectively.
D_{1} : an annulus, $(0<) r_{1}<|z|<r_{2}(<\infty)$ with ($n-2$) circular arc slits centered at the origin.
D_{2} : an annulus, $(0<) r_{1}<|z|<r_{2}(<\infty)$ with ($n-2$) radial slits emanating from the origin.
D_{3} : the unit circle with $(n-1)$ circular arc slits centered at the origin.
D_{4} : the unit circle with ($n-1$) radial slits emanating from the origin.
D_{5} : the whole plane with n circular arc slits centered at the origin.
D_{6} : the whole plane with n radial slits emanating from the origin.
2. We shall first quote Hayman's result (p. 33 in [2]).

Lemma. Let $f(z)=\mathrm{Re}^{i \phi}$ be single-valued, regular, areally mean p-valent in a domain D and $n(R, \Phi)$ denote the quantity defined above. Let $R_{1}=\inf _{z \in D}|f(z)|$ and $R_{2}=\sup _{z \in D}|f(z)|$. Then we have

$$
\begin{gather*}
\int_{R_{1}}^{R_{2}} \frac{p(R)}{R} d R \leq p\left(\log \frac{R_{2}}{R_{1}}+\frac{1}{2}\right) \\
\left(p(R) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} n(R, \Phi) d \Phi\right) \tag{2.1}
\end{gather*}
$$

Hereafter we shall derive the results in this paper by the method quite similar to [1].

Theorem 2.1. Let $f(z)$ be single-valued, regular, areally mean p-valent in D_{1} and satisfy the condition

$$
\int_{C}|d \arg f(z)| \geq 2 \pi p \quad\left(C:|z|=r\left(r_{1}<r<r_{2}\right)\right)
$$

where the circle C does not contain any circular slit of D_{1}. Then we have the following inequality:

$$
\begin{equation*}
p \log \frac{r_{2}}{r_{1}} \leq \log \frac{R_{2}}{R_{1}}+\frac{1}{2} \quad\left(R_{1} \equiv \inf _{z \in D_{1}}|f(z)|, R_{2} \equiv \sup _{z \in D_{1}}|f(z)|\right) . \tag{2.2}
\end{equation*}
$$

Proof. As shown in [1],

$$
\begin{gather*}
\iint_{D_{1}} \rho^{2} r d r d \varphi \geq \frac{p^{2}}{2 \pi} \log \frac{r_{2}}{r_{1}} \quad\left(\rho \equiv \frac{1}{2 \pi}\left|\frac{f^{\prime}(z)}{f(z)}\right|, z=r e^{i \varphi}\right), \tag{2.3}\\
(2 \pi)^{2} \iint_{D_{1}} \rho^{2} r d r d \varphi=\iint_{D_{1}^{*}} \frac{n(R, \Phi)}{R} d R d \Phi \tag{2.4}\\
\left(z=r e^{i \varphi}, w=\operatorname{Re}^{i \phi}, D_{1}^{*}=\text { the image domain of } D_{1}\right) .
\end{gather*}
$$

On the other hand

$$
\begin{aligned}
\iint_{D_{1}^{*}} \frac{n(R, \Phi)}{R} d R d \Phi & =\int_{0}^{2 \pi} \int_{R_{1}}^{R_{2}} \frac{n(R, \Phi)}{R} d R d \Phi \\
& =2 \pi \int_{R_{1}}^{R_{2}} \frac{p(R)}{R} d R .
\end{aligned}
$$

Therefore, by means of Lemma we have

$$
\begin{equation*}
\frac{p^{2}}{2 \pi} \log \frac{r_{2}}{r_{1}} \leq \frac{p}{2 \pi}\left(\log \frac{R_{2}}{R_{1}}+\frac{1}{2}\right) . \tag{2.5}
\end{equation*}
$$

Theorem 2.2. Let $f(z)$ be single-valued, regular, and areally mean p-valent in D_{2}. Let $M=\left\{\gamma_{\varphi}\right\}$ denote the family of the segments $r_{1}<|z|<r_{2}, \arg z=\varphi(0 \leq \varphi<2 \pi)$ which do not contain any radial slit of D_{2}. Then we have the following inequality.

$$
\begin{gather*}
p\left(\log \frac{R_{2}}{R_{1}}+\frac{1}{2}\right) \log \frac{r_{2}}{r_{1}} \geq A^{2} \tag{2.6}\\
\left(A \equiv \inf _{r_{\varphi} \in M} \int_{r_{1}}^{r_{2}}\left|\frac{f^{\prime}(z)}{f(z)}\right| d r, R_{1} \equiv \inf _{z \in D_{2}}|f(z)|, R_{2} \equiv \sup _{z \in D_{2}}|f(z)|\right) .
\end{gather*}
$$

Proof. As shown in [1],

$$
\begin{equation*}
\iint_{D_{2}} \rho^{2} r d r d \varphi \geq \frac{A^{2}}{2 \pi \log \left(r_{2} / r_{1}\right)} \quad\left(\rho=\frac{1}{2 \pi}\left|\frac{f^{\prime}(z)}{f(z)}\right|\right) . \tag{2.7}
\end{equation*}
$$

On the other hand, by means of Lemma, we have

$$
\begin{equation*}
\iint_{D_{2}} \rho^{2} r d r d \varphi \leq \frac{p}{2 \pi}\left(\log \frac{R_{2}}{R_{1}}+\frac{1}{2}\right) . \tag{2.8}
\end{equation*}
$$

3. Next we shall show some applications of Theorem 2.1 and Theorem 2.2.

Theorem 3.1. Let $f(z)$ be single-valued, regular, areally mean p-valent, and bounded, that is, $|f(z)|<1$ in D_{3}. Moreover let

$$
\begin{equation*}
\int_{r \nu} d \arg f(z)=0 \quad(\nu=1,2, \cdots, n-1) \tag{3.1}
\end{equation*}
$$

along every curve γ_{ν} in D_{3} which is sufficiently near to the slit $S_{\nu}(\nu$ $=1,2, \cdots, n-1)$ and encloses it simply, and $f(z)$ be expanded in the neighborhood of the origin as follows:

$$
f(z)=a_{p} z^{p}+a_{p+1} z^{p+1}+\cdots
$$

Then we have

$$
\begin{equation*}
\left|a_{p}\right| \leq e^{1 / 2} \tag{3.2}
\end{equation*}
$$

Proof. Let $\delta(\varepsilon)$ denote the nearest distance from the origin to the image of a small circle $|z|=\varepsilon$ by $w=f(z)$. Then we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\delta(\varepsilon)}{\varepsilon^{p}}=\left|a_{p}\right| . \tag{3.3}
\end{equation*}
$$

By means of the same reasoning as shown in [1] and Theorem 2.1, we have

$$
\begin{equation*}
p \log \frac{1}{\varepsilon} \leq \log \frac{1}{\delta(\varepsilon)}+\frac{1}{2} \tag{3.4}
\end{equation*}
$$

we can derive $\left|a_{p}\right| \leq e^{1 / 2}$ from (3.3) and (3.4).
Theorem 3.2. Let $f(z)$ be single-valued, regular, areally mean p-valent and bounded, that is, $|f(z)|<1$ in D_{4}. Let, in a neighborhood of the origin,

$$
f(z)=a_{p} z^{p}+a_{p+1} z^{p+1}+\cdots
$$

Then we have

$$
\begin{equation*}
\left|a_{p}\right| \geq m^{2} e^{-1 / 2} \quad\left(m=\min _{|z|=1}|f(z)|\right) \tag{3.5}
\end{equation*}
$$

Proof. Let $\delta(\varepsilon)$ or $\delta^{*}(\varepsilon)$ denote respectively the longest or nearest distance from the origin to the image of $|z|=\varepsilon$ by $w=f(z)$. Then, by means of the same reasoning as shown in [1] and Theorem 2.2, we have

$$
\begin{equation*}
\left(\log \frac{m}{\delta(\varepsilon)}\right)^{2} \leq p\left(\log \frac{1}{\delta^{*}(\varepsilon)}+\frac{1}{2}\right) \log \frac{1}{\varepsilon} \tag{3.6}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\delta(\varepsilon)}{\varepsilon^{p}}=\lim _{\varepsilon \rightarrow 0} \frac{\delta^{*}(\varepsilon)}{\varepsilon^{p}}=\left|a_{p}\right| . \tag{3.7}
\end{equation*}
$$

Hence, by letting ε tend to 0 and making use of (3.6) and (3.7), we have

$$
\begin{equation*}
0 \geq \log \frac{m^{2}}{\left|a_{p}\right|}-\frac{1}{2} \tag{3.8}
\end{equation*}
$$

4. Lastly we shall state the results similar to Theorem 3.1 and Theorem 3.2 in the cases of D_{5} and D_{6} which can be also proved by the method indicated in [1].

Theorem 4.1. Let $f(z)$ be single-valued, regular, except for the pole at ∞, areally mean p-valent in D_{5} and expanded in a neighborhood of the origin

$$
f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots
$$

Moreover let

$$
\int_{r_{\nu}} d \arg f(z)=0 \quad(\nu=1,2, \cdots, n)
$$

for every simply closed curve γ_{ν} which is sufficiently near to each circular arc slit S_{ν} and encloses S_{ν} simply. Then we have

$$
\begin{equation*}
\lim _{z \rightarrow \infty}\left|\frac{f(z)}{z^{p}}\right| \geq e^{-1 / 2} \tag{4.1}
\end{equation*}
$$

Theorem 4.2. Let $f(z)$ be single-valued, regular, except at $z=\infty$, areally mean p-valent in D_{6} and let in a neighborhood of $z=\infty$,

$$
f(z)=z^{p} \sum_{n=0}^{\infty} b_{n} z^{-n} \quad\left(b_{0}=1\right)
$$

Moreover let in a neighborhood of the origin

$$
f(z)=a_{p} z^{p}+a_{p+1} z^{p+1}+\cdots
$$

Then we have

$$
\begin{equation*}
\left|a_{p}\right| \geq e^{-1 / 2} \tag{4.2}
\end{equation*}
$$

References

[1] H. Abe: On multivalent functions in multiply connected domains. I. Proc. Japan. Acad., 53, 116-119 (1977).
[2] W. K. Hayman: Multivalent Functions. Cambridge tracts, No. 48 (1958).
[3] Y. Komatu: Conformal Mapping. II. Kyoritu tracts (Tokyo) (1949) (in Japanese).
[4] E. Rengel: Über einige Schlitztheoreme der konformen Abbildung. Schr. Math. Seminars. u. Inst. f. angew. Math., Univ. Berlin, 1, 141-162 (1933).

