11. On the Acyclicity of Free Cobar Constructions. I

Ву Казиніко Аомото

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1977)

1. Let Λ be a group ring or an enveloping algebra of Lie algebras over Z with an augmentation $\varepsilon \colon \Lambda \to Z \to (0)$. Let (X, ∂) be a complex of left Λ -modules

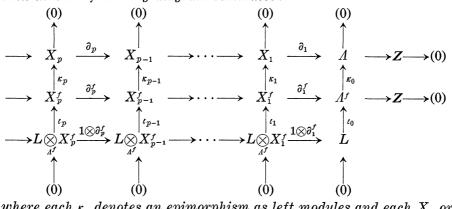
(1.1) $\longrightarrow X_p \xrightarrow{\partial_p} X_{p-1} \xrightarrow{\partial_{p-1}} \cdots \longrightarrow X_1 \xrightarrow{\partial_1} \Lambda \xrightarrow{\varepsilon} Z \longrightarrow (0)$ where each X_p is a free left Λ -module and each ∂_p is a left Λ -module homomorphism. Let Λ^f be a free associative algebra over Z such that we get an exact sequence

$$(1.2) \qquad \qquad (0) \longrightarrow L \xrightarrow{\iota_0} \Lambda^f \longrightarrow \Lambda \longrightarrow (0)$$

where L denotes an ideal of Λ^{f} . First we assume

Assumption 1. i) There exist two sequences (X^{f}, ∂^{f}) and $(L \otimes_{A^{f}} X^{f}, 1 \otimes \partial^{f})$ of left Λ^{f} -modules on the augmentation ε^{f} ,

(1.3) $(0) \longrightarrow (\Lambda^{f})^{+} \longrightarrow \Lambda^{f} \xrightarrow{\varepsilon^{f}} Z \longrightarrow (0)$ such that the following diagram commutes:



where each κ_p denotes an epimorphism as left modules and each X_p or X_p^f is isomorphic to the tensor product $\Lambda \otimes S_p$ or $\Lambda^f \otimes S_p$ respectively for a free abelian group S_p such that $L = X_2^f \otimes \Lambda^f$.

ii) ∂_p^f are all injective on X_p^f , $p \ge 1$.

Let \dot{X}^{f} be the direct sum $\bigoplus_{p=2}^{\infty} X_{p}^{f} \oplus (\Lambda^{f})^{+}$ and $T(\dot{X}^{f})$ be the tensor algebra of \dot{X}^{f} denoted by A. A becomes a free graded algebra $\bigoplus_{s=0}^{\infty} A_{s}$, where A_{s} is spanned by the elements of the form $u_{1}u_{2}\cdots u_{m-1}u_{m}$, $u_{j} \in X_{p_{j}}^{f}$ $(p_{j} \geq 2), j \leq m-1$, and $u_{m} \in \Lambda^{f}$ such that $s = \sum_{j=1}^{m-1} (p_{j}-1)$.

We introduce a lexicographic order into a basis of A: Let $\{u_r^p, \gamma \in \Gamma_p\}$ be an ordered basis of S_{p+1} , $p \ge 1$ and $\{u_r^0, \gamma \in \Gamma_0\}$ be an ordered system

of generators of $(\Lambda^{f})^{+}$. Then the elements of the form $u_{\tau_{1}}^{p_{1}} \cdot u_{\tau_{2}}^{p_{2}} \cdots u_{\tau_{m}}^{p_{m}}$, $\gamma_{\nu} \in \Gamma_{p_{\nu}}, p_{\nu} \geq 0$, form a basis of A.

Definition. We say that u_{α}^{p} , $\alpha \in \Gamma_{p}$ is greater than u_{β}^{q} , $\beta \in \Gamma_{q}$, if $p \geq q$ or p = q and $\alpha \geq \beta$, and that an element $u_{\alpha_{1}}^{p_{1}} \cdots u_{\alpha_{m}}^{p_{m}}$ is greater than an element $u_{\beta_{1}}^{q_{1}} \cdots u_{\beta_{m}}^{q_{m}}$ if $p_{m} = q_{m}$, $\alpha_{m} = \beta_{m}$, \cdots , $p_{m-k+1} = q_{n-k+1}$, $\alpha_{m-k+1} = \beta_{n-k+1}$, and $p_{m-k} \geq q_{n-k}$, or $p_{m} = q_{n}$, $\alpha_{m} = \beta_{n}$, \cdots , $p_{m-k+1} = q_{n-k+1}$, $\alpha_{m-k+1} = \beta_{n-k+1}$, $p_{m-k} = q_{n-k}$ and $\alpha_{m-k} \geq \beta_{n-k}$ for a certain k. Let $A(p_{1}, p_{2}, \cdots, p_{m})$ be the left Λ^{f} -submodule of A generated by the elements $u_{r_{1}}^{p_{1}} \cdot u_{r_{2}}^{p_{m}} \cdot \gamma_{\nu} \in \Gamma_{p_{\nu}}$, $p_{1} \geq 1$ and by $\mathcal{A}(p_{1}, \cdots, p_{m})$ be the direct sum of all the $A(q_{1}, \cdots, q_{n})$ such that $(q_{1}, \cdots, q_{n}) < (p_{1}, \cdots, p_{m})$, An element of $A(p_{1}, \cdots, p_{m})$ will be called of type (p_{1}, \cdots, p_{m}) , and the type (p_{1}, \cdots, p_{m}) will be said to be higher than the type (q_{1}, \cdots, q_{n}) if $p_{m} = q_{n}, \cdots, p_{m-k+1} = q_{n-k+1}$ and $p_{m-k} \geq q_{n-k}$ for a certain k. We next assume

Assumption 2. There exist boundary operators $\delta = \{\delta_s\}, \ \delta_s : A_s \to A_{s-1}$ such that

i) $\delta_s u^s \equiv \partial_{s+1} u^s \mod \mathcal{A}(s-1), u^s \in S_{s+1},$

ii) $\delta u_1 u_2 \cdots u_{m-1} u_m = \sum_{\nu=1}^m (-1) \sum_{j=1}^{\nu-1} \deg u_j u_1 u_2 \cdots u_{\nu-1} \cdot \delta u_{\nu} \cdots u_{m-1} \cdot u_m,$

iii) $\delta_1(A_1)$ coincides with L.

Then we have the complex (A, δ) such that δ preserves each $\mathcal{A}(p_1, \dots, p_m)$. This complex will be called the "free cobar construction" of the complex (X, ∂) . By induction procedure with respect to the types we can prove the

Main Theorem. Under Assumptions 1 and 2 we have (1.5) $H_p(A) \cong (0), p \ge 1$ and $H_0(A) \cong \Lambda, p = 0$, if and only if (1.1) is a free resolution of Λ .

References

- J. F. Adams: On the cobar construction. Colloque de topologie algébrique, Louvain, 81-87 (1956).
- [2] K. T. Chen: Reduced bar construction on de Rham complexes. A Collection of Papers in Hornor of S. Eilenberg. Acad. Press, 19-32 (1976).
- [3] ——: Iterated integrals, fundamental groups and covering spaces. Trans. Amer. Math. Soc., 206, 83–98 (1975).
- [4] T. Nakamura: On cohomology operations. Japanese Jour. of Math., 33, 93-145 (1963).