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1. Main Theorem. Consider the homogeneous linear system of
differential equations
(1.1) 2=A(t)x (x: n-vector)
where the coefficient A(t) is a continuously differentiable n n matrix
unction defined in an interval I in R (0 e I). In this paper the equation
(1.1) is said to be reduced to another equation
(1.2) --B(t)y
of the same orm under the transformation
(1.3) x--ety
i there exists a constant n n matrix S such that the transformation
(1.3) transforms (1.1) into (1.2).

Now, we show the necessary and sufficient condition or the equa-
tion (1.1) is reduced to (1.2) under the transformation (1.3), and also its
some examples and some applications to solve the equation (1.1) ex-
plicitly.

Theorem 1. The homogeneous linear system of differential equa-
tions (1.1) 2=A(t)x with a continuously differentiable coecient matrix
A(t) is reduced to the homogeneous linear system (1.3): =B(t)y of the
same form, if and only if there exists a constant matrix S such that
the equations

A(t) SA(t) A(t)S-- eStB(t)e-t
A(O)--S+B(O)

(.4)
(.5)
hold.

Proof. Under the transformation x=eSty,
]--eStSy - est,]--A(t)eSty

and therefore (1.1) is transformed into the equation
9={e-stn(t)est--S}y.

Now (1.1) is reduced to (1.2) under the transformation (1.3) if and only
i the ollowing equality holds"
(1.6) B(t)=e-StA(t)est--S (t e I).
This and (1.5) are equivalent to

(1.7) eSt d, (e-StA(t)est) e-st-- --estB(t)e-st

(1.8) B(O)--A(O)--S,
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and (1.7) is equivalent to the equation (1.4). Q.E.D.
Corollary 1. The homogeneous linear system of differential equa-

tions (1.1) =A(t)x with a continuously differentiable coeIicient A(t)
is reduced o
(1.2)’ i]--By

of the same form with constant coefficient B under the transformation
(1.3) x eSty, if and only if there exists a constant n n matrix S satis-
lying the equations
(.4)’ A(t) SA(t) A(t)S
(1.5)’ A(O)=S+B.

Proo is obvious rom Theorem 1.
Remark 1. Corollary 1 shows that, i the equation (1.1) is reduced

to (1.2)’ under the transformation (1.3), the undamental matrix solu-
tion (t) of (1.1) satisfying (0)=I is given by the ollowing form:
(1.9) q(t) est eBt

Note that S and B are not commutative except or special cases.
2. xamples. txample 1o Consider the equation (1.1) with the

,coefficient matrix

(--1 et(2.1) n(t)=
0 --1 /"

It can be seen easily that

satisy the equations (1.4)’ and (1.5)’. Thus the fundamental matrix
.solution o (1.1) satisfying (0)=I is given by (1.9), that is

(2.3) (t)=(e-t (1/2)(e--e-t)).0 e-txample 2. Consider the equation (1.1) with the coefficient matrix

(2.4) A(t)=( a+ccos2ot+dsin2(ot b+dcos2ot-csin2(o$
--b + d cos 2ot--c sin 2t a--c cos 2wt--d sin 2ot/’

where a, b, c, d and are real constants. It can be seen that the matrices

)(2.5) S- 0 a+c b+d--w
-o 0 --b+d+o a--c

satisfy the equations (1.4)’ and (1.5)’. Hence the fundamental matrix
solution (t) of (1.1) with (2.4) satisfying (0)=I is given by

(t)_eSt.eBt__l(cosot sinot)
(2.6)

2--2 --sin wt cos t

( ((oZ-- ]e)e’t + (--o)et (et- et

T(e’t-et) (--)et + (--)et]
(if 2 =/= ),

where 2, are the characteristic roots of B, and

T----b+d+w and =a--c. In the case of 2--2, we may have (t) as
the limit matrix o (2.6) with 22.
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Writing (t)=((t)), we have more precisely
(t)--(2--22)-[e’t{(v--22) cos o)t + " sin

+ e{( a) cos ot--- sin ot}]
2(t) (2--22)-[e{fl cos ot + (--) sin ot}

(2.7) + e{--fl cos ot+ (2--) sin ot}]
2(t)=(2--22)-[e’t{(2--a) sin ot + , cos

+ e{(a--2) sin ot--? cos ot}]
22(t)=(2--22)-[e’t{(--22) cos ot--fl sin

+ e{(2--) cos ot-- sin ot}].
Remark 2. Let 2a=--11, b=d=6, 2c=--9 and (0=6, then Ex-

ample 2 reduces to the well known example due to Vinogradov [4].
Remark :. Let 4a=--1, b=--l, 4c=3, d=0 and o=1, then Ex-

ample 2 reduces to the well known example given by Markus-Yamabe
[2].

Theorem 2. The zero solution of the homogeneous linear system
of differential equations (1.1) with the coefficient matrix of the form
(2.4) is uniform-asymptotically stable if and only if the real parts of
the characteristic roots of the matrix B given,in (2.5) are all negative.
That is

Re {a___ /c+ d--b2--o(o--2b)} 0.
Example :. Consider the equation (1.1) with the coefficient matrix

[ --a(t)+(1/2) sin 2t 1+(1/2)(1+cos 2t)(2.S) n(t)=\--l--(1/2)(1--cos 2t) --a(t)--(1/2) sin2t/"
It can be seen easily that the matrices

o)--1 0 0 --a(t)
satisfy the equations (1.4) and (1.5). Thus the undamental matrix
solution (t) of (1.1) with coefficient (2.8) is given by

(2.10) (t)=eI:.( cost sin t).--sin t cos t
:. Application. In this section we shall give an application of

Theorem 1 to (1.1) with a 22 matrix coefficient.
Theorem :. The equation (1.1) with a continuously differentiable

2 2 matrix coelcient
(a(t) b(t)(3.1) A(t)=\c(t) d(t)!

is reduced to the equation (1.2) with the coefficient
(3.2) B(t)= (;t) k) (k constant)

(t)
under the transformation (1.3) with
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if the following conditions are satisfied:
$(t) (a--)b(t) fl(d(t) --a(t)) 0(3.4)
[d(t) ( c0c(t) ,(a(t) d(t)) 0

(3.5) b(0)-- k, c(0)--0

(36) (t) 4(t) tic(t) + yb(t)
(p(t)=d(t)- yb(t) + tic(t).

In this case, the equation (1.1) with the coelicient (3.1) can be solved
explicitly.

The another application o Corollary i to the stability theory o the
homogeneous linear system o differential equations (1.1) will be pub-
lished later on.
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