No. 1] Proc. Japan Acad., 53, Ser. A (1977) 13

5. On the Nilpotency Indices of the Radicals of
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By Shigeo KOSHITANI
Department of Mathematics, Tsukuba University

(Communicated by Koésaku YOSIDA, M. J. A., April 12, 1977)

Let K be an algebraically closed field with characteristic p>0, G a
finite group of order p™g’, (v, 9’)=1, KG a group algebra of G over K,
J(K@) the radical of KG and ¢(G) the nilpotency index of J(KG).

For a block B of KG denote by ¢(B) the nilpotency index of the
radical J(B) of B. G. O. Michler [6] showed that if a defect group D
of B is cyclic and normal in G, then B is a serial ring and ¢(B)=|D|.
In this paper we shall prove that when D is cyclic, B is serial if and
only if ¢(B)=|D|.

D. S. Passman [9], Y. Tsushima [11] and D. A. R. Wallace [12]
showed that m(p —1)+1<t(G) <p™ provided G is p-solvable. Recently
K. Motose and Y. Ninomiya [8] proved that for a p-solvable group G
of p-length 1, #(G)=p™ if and only if a p-Sylow subgroup P of G is
cyclic. We shall generalize this result as follows: For an arbitrary p-
solvable group G, t(G)=p™ if and only if P is cyclic. This is an affirma-
tive answer to Ninomiya’s conjecture announced in the Summer Algebra
Symposium at Matsuyama in Japan (1974).

We call a module uniserial if it has a unique composition series of
finite length. To being with we shall prove

Proposition 1. Let B be a block of KG with a defect group D.
If D is cyclic, then t(B)<|D|.

Proof. We can assume that J(B)=0. Put that B=37, >/,
®KGe,;, where {e;;} are orthogonal primitive idempotents of KG such
that KGe;,=KGe,; for j=1,---,f;; i=1,.---,n and KGe;;#KGe,, if
1%k, and e =e; for i=1,...,n. Let C=(cix)i<i,s<n be the Cartan
matrix for B and ¢; the least positive integer such that J(KG)te;=0 for
i=1,.-.,mn. Then ¢{(B)<max{t,|1=k=<n}=t%, for some ¢ and ¢;<s,,
where s;=>7_, ¢;;. By [4, Satz 1], there is a pair of uniserial left KG-
modules L, L;, such that J(KG)e,=L; + L;,, L;N\ L;,=KGe;|J(KG)e;,
L, and L;, have no common composition factors except KGe;/J(KG)e,,
and all composition factors of L, are nonisomorphic. Again, by [4,
Satz 1], s;=r;+(¢;;—1)7r;,, Where 7, is the number of nonisomorphic
composition factors of L;, for v=1,2, and r;,+7r,,<n-+1. If we put
that c=max {¢;;—1|1=<k<n}, by [1, Theorem 1], |D|=cn+1. There-
fore ¢(B)=|D|.
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Corollary 2. Let P be a p-Sylow subgroup of G. If P is cyclic,
then t(G)<|P)|.

An artinian ring R 51 is called serial if Re and eR are uniserial
modules for any primitive idempotent ¢ of R. Then we have

Theorem 3. Let B be a block of KG with a defect group D. If
D is cyclic, then the followings are equivalent.

1 «B)=|D|.

(2) B is a serial ring.

) The Cartan matriz for B has form

c+1 ¢ . R . c

¢ ¢+1 - .

. . c

¢ - .+ - ¢ c¢+1j,

Proof. If D=1, B is simple artinian. So (1), (2) and (3) always
hold. We can assume that D=+1. We use notations as in Proposition 1.

(2)=>(3) : This follows from [7, Lemma 1].

3B)=>@1): By (3) and [1, Theorem 1], s;=cn+1=|D| for alli. From
[5, Folgerung 4], B is serial. So KGe; 2J(K®e, 2 --- 2J(KG)'Ple;
=0 is a unique composition series of KGe, for all . Put that £
=X, > 7t ey Since EeZ(KG) and E is a unit element of B,
0£J(KG)'?'-re,=EJ(KG)'?'-le,E € EJ(KG)'?'*E = (EJ (KG)E)'?'-*
=J(B)'?'-', Hence from Proposition 1, {(B)=|D|.

(1)=>(2) : By the proof of Propositon 1 and (1), t¢(B)=t;=s;=cn+1
=|D| for some ¢. This shows that KGe, is uniserial, and hence J(KG)e;
=L;, or J(K®)e;=L,, by [4, Satz 1].

Case 1: Assume that J(KG)e;=L,,. Since s;=|D|, by [4, Satz 1]
and [1, Theorem 1], the number of nonisomorphic composition factors
of KGe, is equal to |D|—1=cn. From the definition of n,c=1. So
KGe,|J(KG)e,, - -+, KGe,|J(KG)e, appear as composition factors of
KGe;. Hence, by rearranging the numbers 1, - - -, n, the Brauer tree of
B has form

Since ¢=1, KGe¢, is uniserial for all k=1, ..., n.

Case 2: Assume that J(KG)e;=L;,. As in Casel, the number of
nonisomorphic composition factors of KGe; is equal to (|D|—1)/(¢;;—1)
=cn/(ci;—1)=n. So as in Case 1, ¢ =c¢,;—1 and, by rearranging the
numbers 1, - - -, n, the Brauer tree of B has form
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\\ d
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where V. is the exceptional vertex. This shows that KGe, is uniserial
for all k=1, ..., n.

Similarly, e,KG is uniserial for all k=1, ---,n. This completes the
proof of Theorem 3.

Now, using Theorem 8 and group theory we have the following
main theorem of this paper. This is a generalization of [8, Corollary
1(2)].

Theorem 4. Let G be a p-solvable group with a p-Sylow subgroup
P. Then t(G)=|P| if and only if P is cyclic.

Proof. If P is cyclic, by [10, Theorem 3], KG is serial. By apply-
ing Theorem 3 for each block of KG, t(G)=|P|.

Conversely, assume that {(G)=|P|=p™. We use induction on |G|.
If G=1, it is trivial. Assume that G=1 and it is proved for p-solvable
groups of orders 1,.--,|G|—1. From [8, Corollary 1], we may put
that m=38. Since G is p-solvable, G has a proper normal subgroup H
such that (G: H|,p)=1or |G: H|=p. If (G: H|,p)=1, by [9, Lemma
1.2] and [9, Proposition 1.5], t{(G)=t(H). So from the hypothesis of
induction, H has a cyclic p-Sylow subgroup. i.e. Pis cyclic. Therefore
we can assume that |G: H|=p. By [9, Proposition 1.3] and [9, Lemma,
1.2], J(K@?*CJ(KH)KG=KG-J(KH). So JEKGr**"CJ(KH)'PKG
=0. Hence ¢(G)<p-t(H). From this and [9, Theorem 1.6], #(H)
=p™~!, Thus from the hypothesis of induction, H has a cyclic p-Sylow
subgroup of order p™~!. Now, suppose that P is not cyclic. By [8,
Corollary 1], P is not abelian. Since P has a cyclic subgroup of index
P, by [2, Chap. 5 Theorem 4.4], P is one of the following types,

(i) p=3and P=M,()=<a,bla?=b?""=1,a 'ba=>bP"""*,

(ii) p=2, m=3 and P=D, or Q,,

(i) p=2, m=4 and P=M,2), D,,,Q,, or S,,,
where M,,(2) is defined for p=2 in (i), D,, is a dihedral group, Q,, is a
generalized quaternion group and S,, is a semi-dihedral group (cf. [2,
Chap. 2, Chap. 5]).

Case 1: Assume that p=2. Since H has a cyclic 2-Sylow sub-
group, by [2, Chap. 7 Theorem 6.1], H has a normal 2-complement L.
L is characteristic in H and H is normal in G, and hence L is normal
in G. This implies that L is a normal 2-complement of G. So from
[8, Corollary 1], t(G)+2™ since P is not cyclic. This is a contradiction.

Case 2: Assume that p=3. We can put that P=M,,(p). We use
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notations P, and N, for G as in [3, §1]. Since Z(p)=<{b?>, by [2, Chap.
6 Theorem 3.3], b? €0,, ,(G)=P,. If a € P,, by [8, Corollary 1] and the
hypothesis that P is not cyclic, <a, b?) is a p-Sylow subgroup of P,. So
from [8, Corollary 1] and [9, Theorem 1.6], t(P,)<<p™~! By [9, Prop-
osition 1.5] and [9, Lemma 1.2], {(G)=t(P, and t(N)=t(P,). By [9,
Proposition 1.3] and [9, Lemma 1.2], ¢(P,) <p-t(N,). Thus p™=
(@) <pp™t=pm™. This is a contradiction. So we can assume that
a e P,. Thus we can put that P,/N,=<{bN,> or {(b?N,>. Denote by
@(X) the Frattini subgroup of X for a finite group X. Put that &(P,/N,)
=F /N, and S={zx e G|z 'yaF=yF for all ye P,}. If P,/N,;=<{bN,p,
F={b?>N,. Sofrom o 'ba=>b'b?""", o 'b%aF =b'F foralli. IfP,/N,
=<{b?Nyy, F=<b?">N,. Since Z(P)=<b*), a 'b?*aF =b?"F for all . In
any case a € S. Hence, by [3, Lemma 1.2.5], ¢ € P,. This is a contra-
diction. This finishes the proof of Theorem 4.

Added in proof. After submitted this paper the author received
from Mr. K. Motose a preprint entitled “On radicals of principal
blocks”, in which it is quoted the validity of Proposition 1. Further
it is reported in the same paper that our Theorem 4 has been proved
by Y. Tsushima independently, however, it seems to us that Tsushima’s
proof is different from ours.
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