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Let K be an algebraically closed field with characteristic p 0, G a
finite group of order pg’, (p, g’)--1, KG a group algebra of G over K,
J(KG) the radical of KG and t(G) the nilpotency index of J(KG).

For a block B of KG denote by t(B) the nilpotency index of the
radical J(B) of B. G.O. Michler [6] showed that if a defect group D
of B is cyclic and normal in G, then B is a serial ring and t(B)--ID I.
In this paper we shall prove that when D is cyclic, B is serial if and
only if t(B) [D ].

D. S. Passman [9], Y. Tsushima [11] and D. A. R. Wallace [12]
showed that re(p-- 1) + 1__< t(G) <__p provided G is p-solwble. Recently
K. Morose and Y. Ninomiya [8] proved that for a p-solvable group G
of p-length 1, t(G)--p if and only if a p-Sylow subgroup P of G is
cyclic. We shall generalize this result as follows" For an arbitrary p-
solvable group G, t(G)=p if and only if P is cyclic. This is an affirma-
tive answer to Ninomiya’s conjecture announced in the Summer Algebr
Symposium at Matsuyama in Japan (1974).

We call a module uniserial if it has a unique composition series of
finite length. To being with we shall prove

Proposition 1. Let B be boetc of KG with a defect group D.
If D is cyclic, then t(B)<=ID].

fProof. We can assume that J(B)4= 0 Put that B = ,.=
KGe, where {e} are orthogonal primitive idempotents of KG such
that KGe-KGe for ]--l,...,f; i-1,...,n and KGe,7KGe if
i4=k, and e=e for i=1,...,n. Let C-(c)_,<=n be the Cartan
matrix for B and t the least positive integer such that J(KG)te--O for
i--l, ...,n. Then t(B)<=max{tll<=k<=n}=t for some i and t<=s,
where s--,= c. By [4, Satz 1], there is a pair of uniserial left KG-
modules LI, L2 such that J(KG)e=LI / L2, LI ( LKGe/J(KG)e,
L and L have no common composition factors except KGe/J(KG)e,
and all composition factors of L are nonisomorphic. Again, by [4,
Satz 1], s-r+(c,-1)r., where r is the number of nonisomorphic
composition factors of Lv for v=l, 2, and r+ri<=n+l. If we put
that c=max{c--l]l<__k<=n}, by [1, Theorem 1], ]Dl=cn+l. There-
fore t(B)[D [.
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Corollary 2. Let P be a p-Sylow subgroup of G. If P is cyclic,
then t(G)

An artinian ring R 1 is called serial if Re and eR are uniserial
modules or any primitive idempotent e of R. Then we have

Theorem 3. Let B be a block of KG with a defect group D. If
D is cyclic, then the followings are equivalent.

(1) t(B) =ID I.
(2) B is a seria ring.
(3) The Cartan matrix for B has form

c+l c c
c c+l

c c c+
Proof. I D:I, B is simple artinian. So (1), (2) and (3) always

hold. We can assume that D :/: 1. We use notations as in Proposition 1.
(2)(3)" This ollows rom [7, Lemma 1].
(3):(1) By (3) and [1, Theorem 1], s:cn+ I:IDI or all i. From

[5, Folgerung 4], B is serial. So KGe
:0 is a unique composition series of KGe or all i. Put that E
:L- ,f e. Since E e Z(KG) and E is a unit element o B,
0 :/: J (KG)i1-1 e EJ(KG)I1- eE :_ EJ(KG)
:J(B)I-. Hence rom Proposition 1,

(1):(2) By the proo o Propositon 1 and (1), t(B):t:s:cn+ 1
:]D[ or some i. This shows that KGe is uniserial, and hence J(KG)e
=L or J(KG)e--L by [4, Satz 1].

Case 1" Assume that J(KG)e:L. Since s:lDl, by [4, Satz 1]
and [1, Theorem 1], the number o nonisomorphic composition actors
o KGe is equal to [Dl-l:cn. From the definition of n, c:1. So
KGe/J(KG)e,..., KGen/J(KG)e appear as composition actors
KGe. Hence, by rearranging the numbers 1, ., n, the Brauer tree of
B has orm

KGe

o KGex

\, KGe/o

Since c-I, KGe is uniserial for all k= 1, ..., n.
Case 2" Assume that J(KG)e,-----L,.. As in Case 1, the number of

nonisomorphic composition factors of KGe, is equal to (l D l-- 1) / (c**-- 1)
-----cn/(c,--1)>n. So as in Case 1, c =c,--1 and, by rearranging the
numbers 1, ..., n, the Brauer tree of B has form
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KGe2 KGe[

\ VexcKGe4

where V is the exceptional vertex. This shows that KGe is uniserial
for 11 =1, ., n.

Similarly, eKG is uniserial for all k= 1, ..., n. This completes the
proof of Theorem 3.

Now, using Theorem 3 and group theory we have the following
main theorem of this paper. This is a generalization of [8, Corollary

(2)].
Theorem 4. Let G be a p-solvable group with a p-Sylow subgroup

P. Then t(G)=]P] if and only if P is cyclic.
Proof. If P is cyclic, by [10, Theorem 3], KG is serial. By apply-

ing Theorem 3 for each block of KG, t(G)=[P].
Conversely, assume that t(G)=[P=p. We use induction on GI.

If G=I, it is trivial. Assume that G1 and it is proved for p-solvable
groups of orders 1,...,G]-I. From [8, Corollary 1], we may put
that m3. Since G is p-solvable, G has a proper normal subgroup H
such that (IG’H],p)=I or [G’HI=p. If ([G’H],p)=I, by [9, Lemma
1.2] and [9, Proposition 1.5], t(G)=t(H). So from the hypothesis of
induction, H has a cyclic p-Sylow subgroup, i.e. P is cyclic. Therefore
we can assume that G" H=p. By [9, Proposition 1.3] and [9, Lemma
1.2], J(KG) J(KH)KG=KG. J(KH). So J(KG)’t(n)J(KH)t(n)KG
=0. Hence t(G)p.t(H). From this and [9, Theorem 1.6], t(H)
=p-x. Thus from the hypothesis of induction, H has a cyclic p-Sylow
subgroup of order p-. Now, suppose that P is not cyclic. By [8,
Corollary 1], P is not abelian. Since P has a cyclic subgroup of index
p, by [2, Chap. 5 Theorem 4.4], P is one of the following types,

( ) p3 nd PM(p)=(a,b]a=b-’=l,a-ba=b-+),
(ii) p=2, m=3 and PD or Q,
(iii) p=2, m4 and PM(2), D,Q or S,

where M(2) is defined for p-2 in (i), D is a dihedral group, Q is a
generalized quaternion group and S is a semi-dihedral group (cf. [2,
Chap. 2, Chap. 5]).

Case 1" Assume that p=2. Since H has a cyclic 2-Sylow sub-
group, by [2, Chap. 7 Theorem 6.1], H has a normal 2-complement L.
L is characteristic in H and H is normal in G, and hence L is normal
in G. This implies that L is a normal 2-complement of G. So from
[8, Corollary 1], t(G)2 since P is not cyclic. This is a contradiction.

Case 2" Assume that p3. We can put that P=M(p). We use
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notations P and N for G as in [3, 1]. Since Z(p)-(b, by [2, Chap.
6 Theorem 3.3], bP e Op,,(G)-P1. I a e PI, by [8, Corollary 1] and the
hypothesis that P is not cyclic, (a, b is a p-Sylow subgroup o P. So
rom [8, Corollary 1] and [9, Theorem 1.6], t(P1)p-. By [9, Prop-
osition 1.5] and [9, Lemma 1.2], t(G)--t(P) and t(N)--t(PI). By [9,
Proposition 1.3] and [9, Lemma 1.2], t(P2)<=p.t(N). Thus p-
t(G) pp-l-p. This is a contradiction. So we can assume that
a e P. Thus we can put that P/No--(bNo or (bNo. Denote by
q(X) the Frattini subgroup o X or a finite group X. Put that q(P/No)
--F/No and S---{x e GI x-yxF---yF or all y e P}. I P/No--(bNo,
F--(bNo. So rom a-ba--bb-, a-baF--bF or all i. IPI/N0
=(bNo, F--(bNo. Since Z(P)=(bP, a-lb*aF=bF or all i. In
any ease a e S. Hence, by [3, Lemma 1.2.5], a e P. This is a contra-
diction. This finishes the proo of Theorem 4.

Added in proof. Ater submitted this paper the author received
rom Mr. K. Motose a preprint entitled "On radicals o principal
blocks", in which it is quoted the validity o Proposition 1. Further
it is reported in the same paper that our Theorem 4 has been proved
by Y. Tsushima independently, however, it seems to us that Tsushima’s
proo is different rom ours.
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