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1. Let be a set of integers in an interval of length N. Also let
P be a set of prime numbers p to each of which t9 a set of residues
(mod p) is associated. It is assumed that It9l the number of elements
of t9 satisfies 0IIP. Then the large sieve under the present con-
sideration is the problem of estimating

S=I {n e ; n(mod p) for all p e } .
According to the famous theorem of Montgomery [2] (with the latter
refinement [3]) we have

where

Kobayashi [1] made an important observation that the optimal
value o the Selberg 2 (see (2) below) can be put into an expression
which combines well with the dual orm of the (additive) large sieve
inequality, and thus he got a proo o (1) via Selberg’s procedure.

The purpose of the present note is to show that there is a simpler
modification of Selberg’s argument than Kobayashi’s which leads us
to (1)quite straightforwardly. In particular we do not need the ex-
plicit value o 2. But as [1] we have to appeal to the ollowing result
due to Montgomery and Vaughan [3; ormula (2.3)]

Lemma. Let {xj be a set of real numbers which are well-spaced
(mod 1). Then, for any complex numbers b and real M and N(O),
we have

e*= <(N+$- Ibb
MnM+N j

2. In order to simplify the notations we introduce the ollowing
conventions that 9=9,9...9 if d=plp...pt and that
n e 9 means n (mod d) e 9, so n e 9 or any n.

Then by the undamental idea o Selberg we have

(2) S 2
MnM+N

where (M, M+N] and 2 are complex numbers defined on whose
values are arbitrary, except or



No. 4] Large Sieve. II 123

(3) ----1.
It is easy to see that the characteristic function of the set of integers
n such that n e t9 is given by

11 , , exp 2i (n--l) , , exp 2i (n--l)
(qr)=l

But obviously, exp (--2ir--/) ’to’

Thus (2) can be written as

s E E 19I-M<nM+N

(})( )( ( ))1exp 2i n ]9] exp -2iL1
r=l d0(moda) d q

(q,r) =1

Hence, by the lemma and by that r/q in the above sum are Q-2 well-
spaced (mod 1), we have

Sg(N+Q) ]gq1-2 exp -2iL1
(q,r) =1

Here we note

I exp (--2ui/)r=l q
(q,r) =1

So we find

( 4 ) S<-(N+Q) E ]-I (P [/21--1) E I2ll.lqeO_. Plq d-O(mod q) d
Now we put

d0(mod q) d
then the condition (3) is transformed into, /(q)yq--2l=l,

where/(q) is the Moebius function. And by Schwarz’s inequality we
get, for certain optimal yq,

]yq]’, (p ]/2,]- --1)}{qeQ ,
Combined with (4), this gives rise to (1).

3. By the way we remark that a large sieve extension of a recent
sieve result of Selberg [4] can be expressed in the following orm"

q 5" z(n)(n’)al’
(q,r) =1r

(N+Q) a5
MnM+W
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where a are arbitrary complex numbers and

with the Ramanujan sum %(n--l).
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