No. 1]

Topologically Unequivalent Diffeomorphisms Whose Suspensions Are C[∞] Equivalent

By Gikō Ikegami

Department of Mathematics, College of General Education, Nagoya University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1977)

Let $\psi_t(x,s) = (x,s+t)$ be the trivial flow on $M \times R$. Let $M_f = M \times R/(f(x),t) \sim (x,t+1)$ be the attaching torus of a diffeomorphism f on M. The flow φ_t on M_f induced by ψ_t is called a suspension of f.

If two diffeomorphisms f and f' on M and M', respectively, are C^r equivalent (C^r conjugate) the suspensions φ and φ' of f and f' are C^r equivalent; i.e. there is a C^r diffeomorphism from M_f to $M'_{f'}$ mapping any orbit of φ onto an orbit of φ' with preserving the orientations of orbits. But the converse is not true. (See [1] or [2].) In case that there is no surjection $\pi_1(M) \rightarrow Z$ or $\pi_1(M') \rightarrow Z$, the C^r equivalence of φ and φ' implies the C^r equivalence of f and f'. (See [1].)

M. M. Peixoto asked to the author whether there exist topologically unequivalent two diffeomorphisms on the same manifold whose suspensions are equivalent. Next theorem was motivated by this question.

Theorem. Let N be a compact manifold with dim $N \ge 0$ and let $M = N \times S^1$, where S^1 is the 1-sphere. Then, there are infinitely many Morse-Smale C^{∞} diffeomorphisms f_i $(i=1,2,\cdots)$ on M satisfying the following properties.

i) The all suspensions of f_i $(i=1, 2, \dots)$ are C^{∞} equivalent.

ii) If $i \neq j$, f_i and f_j are not topologically equivalent.

Lemma. Let f be a diffeomorphism on $M=N \times S^1$ with at least one periodic point such that f is diffeotopic to the identity. (i.e. there is a smooth map $F: M \times I \rightarrow M$ such that F(, 0) = id, F(, 1) = f, and that F(, t) is a diffeomorphisms on M for any $t \in I$, where I = [0, 1].) Then there are C^{∞} diffeomorphisms f_i $(i=1, 2, \cdots)$ satisfying the following properties.

i) $f_1=f$.

ii) The all suspensions of f_i (i=1, 2, ...) are C^{∞} -equivalent.

iii) If $i \neq j$, f_i and f_j are not topologically equivalent.

Proof. Since f is deffeotopic to the identity, M_f is diffeomorphic to $M \times S^1$. We may consider the suspension φ_t of f as a flow on $M \times S^1$ such that for any $s \in S^1M \times s$ is a cross-section of φ_t . We define a submanifold M_n of $M \times S^1$ for $n=2, 3, \cdots$ as follows.

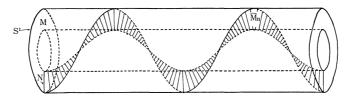
 $\tilde{M}_n = \{(x, e^{2\pi nti}, t) \in N \times S^1 \times I \mid x \in N, t \in I\}$ is a codimension one sub-

G. IKEGAMI

manifold of $M \times I$. By the attaching

 $M \times I/(x, 0) \sim (x, 1) = M \times S^1$,

the submanifold \tilde{M}_n of $M \times I$ becomes a submanifold M_n of $M \times S^1$. (See the figure.) For n=1, M_1 is defined as $M_1=M\times 0 \subset M \times S^1$.



 M_1, M_2, \cdots are diffeomorphic to M. M_1 is a cross-section of φ_t and the Poincaré transformation is equal to f. Since M_n is a cross-section of φ_t for a sufficiently large n, we define f_n as the Poincaré transformation on M_n of φ_t . Let

 $P(g) = \inf \{ \text{minimal period of } x \mid x \in \text{Per}(g) \}.$

Since $P(f_n) = n \cdot P(f)$, f_i and f_j are not topologically equivalent for $i \neq j$. Therefore, for sufficiently large $m f_1, f_m, f_{m+1}, f_{m+2}, \cdots$ are the required diffeomorphisms.

Proof of Theorem. Let g be a time one diffeomorphism on M of the gradient vector field of a Morse function $\mu: M \to \mathbb{R}$. g has only finite periodic points and all of these are hyperbolic fixed points. Let $\psi: M$ $\times \mathbb{R} \to M$ be the flow of grad μ . Then, $\psi \mid M \times I$ is a diffeotopy from the identity map to g. g can be approximated by a Morse-Smale diffeomorphism f. Since there is a diffeotopy from g to f, f is diffeotopic to the identity. The suspension φ of f is also Morse-Smale. Thus, for any cross-section of φ the Poincaré transformation is Morse-Smale. Hence, by the proof of Lemma all diffeomorphisms f_1, f_2, \cdots obtained by Lemma are Morse-Smale. This proves Theorem.

 $\mathscr{D}^{\infty}(M)$ and $\mathscr{X}^{\infty}(M)$ denote the spaces of all diffeomorphisms and vector fields on M with C^{∞} topology.

Corollary (M. M. Peixoto). For $M=N\times S^1$ there are infinitely many stable components in $\mathcal{D}^{\infty}(M)$ such that by suspension they go to the same stable component in $\mathcal{X}^{\infty}(M\times S^1)$.

References

- G. Ikegami: On classification of dynamical systems with cross-section. Osaka J. Math., 6, 419-433 (1969).
- [2] ——: Flow equivalence of diffeomorphisms I, II. Osaka J. Math., 8, 49–76 (1971); Cor., 9, 335–336 (1972).