28. On the Simple Extension of a Space with Respect to a Uniformity. II.

By Kiiti Morita.

(Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

The present note is a continuation of our previous study concerning the simple extension of a space with respect to a uniformity¹). As an application we deduce Shanin's theory on the bicompact extensions of topological spaces²). We use the same terminologies and notations as in the first note which will be cited with I.

§ 1. A characterization of the simple extension. Let R^* be the simple extension of a space R with respect to a uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}^{s}$. Then we have

Lemma 1. For an open set G of R it holds that $G^* = R^* - \overline{R-G}$, where the bar indicates the closure operation in R^* .

Proof. Since $(R-G) \cdot G^* = 0$ by I, Lemma 5, we have $R-G \subset R^*-G^*$ and hence $\overline{R-G} \subset R^*-G^*$. On the other hand, if $x \in R^*-G^*$, then, for any open set H of R such that $x \in H^*$, we have $H^*(R^*-G^*) \neq 0$, and hence $H^*(R-G) \neq 0$; this shows that $R^*-G^* \subset \overline{R-G}$.

Theorem 1. The simple extension R^* of a space R with respect to a uniformity $\{\mathfrak{ll}_a; \alpha \in \Omega\}$ is characterized as a space S with the following properties (i.e. such a space S is mapped on R^* by a homeomorphism which leaves each point of R invariant):

(1) R is a subspace of S.

(2) $\{S-\overline{R-G}; G \text{ open in } R\}$ is a basis of open sets of S.

(3) Each point of S-R is closed.

(4) $\mathfrak{B}_a = \{S - \overline{R - U}; U \in \mathfrak{U}_a\}$ is an open covering of S.

(5) $\{S(x, \mathfrak{V}_a); \alpha \in \Omega\}$ is a basis of neighbourhoods at the point x of S-R.

(6) For any point x of S-R there exists a vanishing Cauchy family $\{X_{\lambda}\}$ of R (with respect to $\{\mathfrak{U}_{a}\}$) such that $x = II\overline{X}_{\lambda}$ in S, and

¹⁾ K. Morita: On the simple extension of a space with respect to a uniformity, I, the Proc. 27, No. 2 (1951).

²⁾ N. A. Shanin: Doklady URSS, 38 (1943), pp. 3-6; pp. 110-113; pp. 154-156. These papers are not yet accessible to us; we knew the results only by Math. Reviews.

³⁾ Cf. I, §§1 and 3. It is to be noted that a space means here a neighbourhood space such that the family of all open sets containing a point p forms a basis of neighbourhoods of p.

for any vanishing Cauchy family $\{P_{\mu}\}$ of R we have $\Pi \overline{P}_{\mu} \neq 0$ in S. Here the bar indicates the closure operation in S.

Proof. By virtue of Lemma 1 and I, Lemmas 8-11 we see that R^* has these properties (1)-(6). Let S be another space with the properties (1)-(6). For a vanishing Cauchy family $\{X_{\lambda}\}$ of the class x which is a point of $R^* - R$ we have $\prod \overline{X}_{\lambda} \neq 0$ in S by (6). If $y, z \in II\overline{X}_{\lambda}$, then $y \in IIS(z, \mathfrak{V}_{a}) \cdot (S-R)$, since $S(X_{\lambda}, \mathfrak{U}_{p}) \subset U_{a}$ implies $X_{\lambda} \subset S(X_{\lambda}, \mathfrak{B}_{\beta}) \subset S \stackrel{a}{-} \overline{R - U_{\alpha}}$ where $U_{\alpha} \in \mathfrak{U}_{\alpha}$; and therefore we have y = z by (3) and (5). If $\{Y_{\mu}\}$ is another Cauchy family of the class x, then for any $\beta \in \Omega$ and $X_{\lambda} \in \{X_{\lambda}\}$ there exist $Y_{\mu} \in \{Y_{\mu}\}$ and $\gamma \in \Omega$ such that $S(Y_{\mu}, \mathfrak{l}_{\tau}) \subset S(X_{\lambda}, \mathfrak{l}_{\beta})$. Hence, if $S(X_{\lambda}, \mathfrak{l}_{\beta}) \subset U_{\alpha}$, we have $\overline{Y}_{\mu} \subset S(Y_{\mu}, \mathfrak{B}_{\tau}) \subset S - \overline{R - U_{a}}$ and consequently $\Pi \overline{X}_{\lambda} = \Pi \overline{Y}_{\mu}$. Therefore we can define a mapping f of R^* into S by putting f(x) = xfor $x \in R$ and $f(x) = \prod \overline{X}_{\lambda}$ for $x \in R^* - R$. By (6) we see that f maps R^* on the whole of S and $f(R^*-R) = S-R$. Let G be an open set of R and x any point of $G^* \rightarrow G$. Then for a Cauchy family $\{X_{\lambda}\}$ of the class x there exist $X_{\lambda} \in \{X_{\lambda}\}$ and $\alpha \in \mathcal{Q}$ such that $S(X_{\lambda}, \mathfrak{U}_{\alpha}) \subset G$; the latter relation implies $f(x) \in \overline{X}_{\lambda} \subset S(X_{\lambda}, \mathfrak{B}_{s}) \subset S - \overline{R-G}$. Conversely, if $f(x) = \prod \overline{X}_{\lambda} \in (S - \overline{R - G}) - R$, then by (5) there exists $\alpha \in \Omega$ such that $S(f(x), \mathfrak{V}_a) \subset S - \overline{R - G}$. Suppose that $S(X_{\lambda}, \mathfrak{U}_{\beta}) \subset U_a$, $U_a \in \mathfrak{U}_a$. Then $S - \overline{R - U_a} \subset S(f(x), \mathfrak{V}_a) \subset S - \overline{R - G}$ and hence $U_a \subset G$. This shows that $S(X_{\lambda}, \mathfrak{U}_{\beta}) \subset G$, that is, $x \in G^*$. Thus f is a topological mapping of R^* onto S.

§ 2. A theorem concerning \mathbb{R}^* . In this section we shall denote by \overline{A} the closure of A in the space \mathbb{R}^* , where \mathbb{R}^* is the simple extension of a space \mathbb{R} with respect to a uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$.

Lemma 2. For a closed set F of R it holds that

$$\overline{F} = F + [IIS(F, \mathfrak{U}_{\mathfrak{a}}^*)] \cdot (R^* - R).$$

Proof. Since it is clear that $\overline{F}-F \subset R^*-R$, we have only to prove that a point x of R^*-R belongs to $\overline{F}-F$ if and only if $x \in IIS(F, U_a^*)$. This follows immediately from the fact that

 $\{S(x, \mathfrak{U}^*_{\alpha}); \alpha \in \mathcal{Q}\}$ is a basis of neighbourhoods of x (cf. I, Lemma 9).

Now we can establish the following theorem, which is of importance in applications.

Theorem 2. Let G_{λ} , $\lambda \in \bigwedge$ be open sets of R. Suppose that for any $\alpha \in \Omega$ there exists some $\beta \in \Omega$ such that $\mathfrak{ll}_{\mathfrak{s}}$ is a refinement of the covering $\mathfrak{W}_{\mathfrak{a}}$, where $\mathfrak{W}_{\mathfrak{a}} = \{G_{\lambda}; \lambda \in \bigwedge\} + \{U; U(R - \supseteq G_{\lambda}) \neq 0, U \in \mathfrak{ll}_{\mathfrak{a}}\}.$ Then the relation

$$(\sum G_{\lambda})^* = \sum G_{\lambda}^*$$

holds in the space R^* .

K. MORITA.

Proof. Let us put $L = S(R - \sum G_{\lambda}, \mathbb{U}_{a}^{*})$. From the hypothesis of the theorem it follows that $\sum G_{\lambda}^{*} + L = R^{*}$, and hence we have $R^{*} - \sum G_{\lambda}^{*} \subset IIS(R - \sum G_{\lambda}, \mathbb{U}_{a}^{*})$. Therefore we have, by Lemma 2, $(R^{*} - \sum G_{\lambda}^{*})(R^{*} - R) \subset \overline{R - \sum G_{\lambda}} - (R - \sum G_{\lambda})$, and consequently $R^{*} - \sum G_{\lambda}^{*} \subset \overline{R - \sum G_{\lambda}}$, since $(R^{*} - \sum G_{\lambda}^{*}) \cdot R = R - \sum G_{\lambda}$. Thus we have, by Lemma 1, $(\sum G_{\lambda})^{*} \subset \sum G_{\lambda}^{*}$. Since the converse relation $\sum G_{\lambda}^{*} \subset (\sum G_{\lambda})^{*}$ holds clearly, the proof of Theorem 2 is completed.

Remark. In case R^* is bicompact and $\{\mathfrak{U}_{\alpha}\}$ is a T-uniformity agreeing with the topology, the converse of Theorem 2 holds.

§ 3. Uniformly continuous mappings.

Theorem 3. Let f be a uniformly continuous mapping of a space R with a uniformity $\{\mathbb{U}_{\lambda}\}$ into a T_1 -space S with a regular uniformity $\{\mathbb{V}_{\alpha}\}$ agreeing with the topology. Then f can be extended to a uniformly continuous mapping f^* of R^* into S^* . Here R^* or S^* is the simple extension of R or S with respect to the uniformity $\{\mathbb{U}_{\lambda}\}$ or $\{\mathbb{S}_{\alpha}\}$ and a uniformly continuous mapping is defined as such a mapping φ that for any $\mathfrak{B}_{\alpha} \in \{\mathbb{B}_{\alpha}\}$ there exists a refinement $\mathbb{U}_{\lambda} \in \{\mathbb{U}_{\lambda}\}$ of the covering $\varphi^{-1}(\mathbb{B}_{\alpha})^{4}$.

Proof. Let x be a point of $R^* - R$ and $\{X_{\sigma}\}$ a vanishing Cauchy family of the class x. Then $\{f(X_{\sigma})\}$ is clearly a Cauchy family of S with respect to the uniformity $\{\mathfrak{V}_{\alpha}\}$ and if $\{X_{\sigma}\} \sim \{Y_{\tau}\}$, then $\{f(X_{\sigma})\} \sim \{f(Y_{\tau})\}$. Hence if we put

$$f^*(x) = II\overline{f(X_{\sigma})}, \quad \text{for } x \in R^* - R,$$

$$f^*(x) = f(x), \qquad \text{for } x \in R,$$

where the bar indicates the closure operation in S^* , f^* defines a one-valued mapping of R^* into S^* .

Let \mathfrak{B}_{α} be any covering of $\{\mathfrak{B}_{\alpha}\}$. Then if we take a covering $\mathfrak{B}_{\lambda(\alpha)}$ with the property mentioned in the condition (C) of the first note I, §1 and determine a covering $\mathfrak{U}_{\mu} \in {\mathfrak{U}_{\lambda}}$ such that \mathfrak{U}_{μ} is a refinement of $f^{-1}(\mathfrak{B}_{\lambda(\alpha)})$, we can easily verify that \mathfrak{U}_{μ}^{*} is a refinement of $(f^{*})^{-1}(\mathfrak{B}_{\alpha}^{*})$.

§ 4. Shanin's theory. Let \mathfrak{G} be a basis of open sets of a space R such that \mathfrak{G} contains R. Throughout this section we denote by $\{\mathfrak{U}_{\alpha}\}$ the family of all the finite open coverings \mathfrak{U}_{α} which consist of a finite number of sets belonging to \mathfrak{G} ; $\{\mathfrak{U}_{\alpha}\}$ is not empty, since $\{R\}$ can be regarded as such a covering.

Theorem 4. The simple extension R^* of R with respect to the uniformity $\{\mathfrak{U}_a\}$ defined above is bicompact.

Proof. As is shown in the remark at the end of §3 in I, $\mathfrak{G}^* = \{G^*; G \in \mathfrak{G}\}$ is a basis of open sets of \mathbb{R}^* . Hence we have

⁴⁾ $\varphi^{-1}(\mathfrak{F}_{\alpha})$ means a covering of R which consists of $\varphi^{-1}(V)$, $V \in \mathfrak{S}_{\alpha}$.

only to prove that any open covering \mathfrak{M} of R^* consisting of sets $G_{\lambda}^*(\lambda \in \wedge)$ of \mathfrak{G}^* has a finite subcovering. We put $\mathfrak{F} = \{F; R - F \in \mathfrak{G}\}$ and denote by $\mathfrak{I}\mathfrak{F}$ the family of all the finite intersections of sets of \mathfrak{F} . Suppose that $\mathfrak{M} = \{G_{\lambda}^*; \lambda \in \wedge\}$ has no finite subcovering. Then $\{R - G_{\lambda}; \lambda \in \wedge\}$ has the finite intersection property, and there exists a maximal family $\{X_{\tau}\}$ of sets of $\mathfrak{I}\mathfrak{F}$ which contains $\{R - G_{\lambda}; \lambda \in \wedge\}$ and has the finite intersection property. Let $\mathfrak{U}_{\mathfrak{a}} = \{G_1, \ldots, G_m\}$ be any covering of $\{\mathfrak{U}_{\mathfrak{a}}\}$. Then by the maximality of $\{X_{\tau}\}$ we have $X_{\tau} \cdot (R - G_j) = 0$ for some $X_{\tau} \in \{X_{\tau}\}$ and some j. Since $X_{\tau} \in \mathfrak{I}\mathfrak{F}$, X_{τ} is expressed as $\prod_{i=1}^{n} (R - H_i)$ with $H_i \in \mathfrak{G}$ $(i = 1, 2, \ldots, n)$. Then $\{G_j, H_1, \ldots, H_n\}$ is a covering of R and hence it is equal to some $\mathfrak{U}_{\mathfrak{b}} \in \{\mathfrak{U}_{\mathfrak{a}}\}$, and we have $S(X_{\tau}, \mathfrak{U}_{\mathfrak{b}}) \subset G_j$. This shows that $\{X_{\tau}\}$ is a Cauchy family in R with respect to $\{\mathfrak{U}_{\mathfrak{a}}\}$. Hence we have $\Pi \overline{X}_{\tau} \neq 0$ in R^* and therefore $\overline{\Pi R - G_{\lambda}} \neq 0$. The last relation contradicts the assumption that $\{G_{\lambda}^*\}$ is a covering of R^* .

Next we shall show that the simple extension R^* in the present case is characterized as a *bicompact* space S with the properties:

- 1) R is a subspace of S.
- 2) $\{S \overline{R G}; G \in \mathfrak{G}\}$ is a basis of open sets of S.
- 3) Each point of S-R is closed.

4) For any finite number of sets G_1, \ldots, G_m of $\mathfrak{G}, G_1 + \cdots + G_m = R$ implies $\sum_{i=1}^m (S - \overline{R} - \overline{G_i}) = S.$

Here the bar indicates the closure operation in S.

In view of Theorem 1 it is sufficient to prove that the conditions (5) and (6) in Theorem 1 follow from 1)-4) and the bicompactness of S, since it is clear that (1)-(4) are implied by 1)-4).

Let $x \in S-R$. Then there exist $F_{\lambda}(\lambda \in \bigwedge)$ such that $x = \prod \overline{F}_{\lambda}$ and $R-F_{\lambda} \in \mathfrak{G}$, since x is closed by 3). If $x \in S-\overline{R-U}_{\alpha}$ for some $U_{\alpha} \in \mathbb{N}_{\alpha}$ there exist a finite number of sets $F_{\lambda i}$, $\lambda_i \in \bigwedge$, i = 1, 2, ..., nsuch that $\prod \overline{F}_{\lambda i} \subset S-\overline{R-U}_{\alpha}$, since S is bicompact. This shows that $S(\prod F_{\lambda i}, \mathbb{N}_{\beta}) \subset U_{\alpha}$, where $\mathbb{N}_{\beta} = \{U_{\alpha}, R-F_{\lambda_{1}}, ..., R-F_{\lambda n}\}$. Therefore $\{\prod_{i=1}^{m} F_{\nu i}; \nu_{i} \in \bigwedge, m = 1, 2, ...\}$ is a vanishing Cauchy family in R with respect to $\{\mathbb{N}_{\alpha}\}$, and we have $S(x, \mathfrak{B}_{\beta}) \subset S-\overline{R-U}_{\alpha}$. Combining this result with the bicompactness of S we see that (5) and (6) hold. Thus we obtain

Theorem 5. Let \mathfrak{G} be a basis of open sets of a space R such that \mathfrak{G} contains R as an element. Then there exists a bicompact space S with the properties 1)-4). Moreover such a space S is essentially unique in the sense that any space S with these properties is mapped on the simple extension R^* of R (with respect to $\{\mathfrak{U}_a\}$ defined above) by a homeomorphism which fixes each point of R.

K. MORITA.

The space S in Theorem 5 is called the bicompact extension of R with respect to an open basis \mathfrak{G} .

Supplement to Theorem 5. For the space S in Theorem 5 we have

5)
$$S - \overline{R - \sum_{i=1}^{m} G_i} = \sum_{i=1}^{m} (S - \overline{R - G_i}),$$

where G_i (i = 1, 2, ..., m) are any finite number of sets of (S^5) .

Proof. The relation follows immediately from Theorems 2 and 5.

Now let us assume that R is a T-space and an open basis \mathfrak{G} satisfies the further condition:

$$\beta) \qquad \qquad G, H \in \mathfrak{G} \text{ implies } G \cdot H \in \mathfrak{G}.$$

Then the uniformity $\{\mathfrak{ll}_{\alpha}\}$, which consists of all the finite open coverings with sets of \mathfrak{G} as elements, is a T-uniformity. Hence the simple extension R^* of R with respect to this uniformity is a T-space by I, Theorem 5. If we put $\mathfrak{F} = \{F; R - F \in \mathfrak{G}\}$, the condition β) is transformed into the following condition:

 $\beta)'$ $F, K \in \mathfrak{F}$ implies $F + K \in \mathfrak{F}$

and Theorem 5 may be stated as follows.

Theorem 6. Let \mathfrak{F} be a basis of closed sets of a T-space R such that the empty set belongs to \mathfrak{F} and \mathfrak{F} satisfies the condition β)'. Then there exists a bicompact T-space S with the following properties :

1)' R is a subspace of S.

2)' $\{\overline{F}; F \in \mathfrak{F}\}$ is a basis of closed sets of S.

3)' Each point of S-R is closed.

4)' For any finite number of sets F_1, \ldots, F_m of $\mathfrak{F}, F_1F_2 \ldots F_m = 0$ implies $\overline{F}_1 \cdot \overline{F}_2 \ldots \overline{F}_m = 0$.

Here the bar indicates the closure operation in S. Moreover such a space S is essentially unique.

Supplement to Theorem 5 we may replace the condition 4)' by the stronger condition:

5)' $\overline{F_1 \cdot F_2 \dots F_m} = \overline{F_1} \cdot \overline{F_2} \dots \overline{F_m}$ for any finite number of sets F_1, F_2, \dots, F_m of \mathfrak{F} .

Theorem 6 with the conditions 1)', 2)', 3)', 5)' is established by N. A. Shanin⁶⁾. We call S in Theorem 6 the bicompact extension of R with respect to a closed basis \mathfrak{F} . N. A. Shanin called S the (ω, \mathfrak{F}) -extension.

⁵⁾ The condition 4) is implied by 5).

⁶⁾ Loc. cit., 2). Shanin's proof is not known to us. We remark here that a generalization of Wallman's famous procedure gives a direct proof of this theorem.

The condition of Shanin:

 $\alpha)' \text{ For any point } x \in R \text{ and } F \in \mathfrak{F} \text{ such that } x \in R - F \text{ there} \\ \text{exist } F_i \in \mathfrak{F}, \ i = 1, 2, \dots, m \text{ with the properties} : x \in \prod_{i=1}^m F_i \text{ and} \\ \left(\prod_{i=1}^m F_i\right) \cdot F = 0,$

is stated in terms of (3) as follows.

 $\alpha) \quad \text{For any } x \in R \text{ and } G \in \mathfrak{G} \text{ such that } x \in G \text{ there exist } G_i \in \mathfrak{G}, \\ i = 1, 2, \ldots, m \text{ with the properties: } x \in R - \sum_{i=1}^m G_i, G + \sum_{i=1}^m G_i = R. \\ \text{This condition is equivalent to the condition that the uniformity}$

 $\{\mathfrak{ll}_a\}^{\tau}\}$ agrees with the topology of R. Another condition of Shanin: δ ' For $F_1, F_2 \in \mathcal{F}\mathfrak{F}$ such that $F_1 \cdot F_2 = 0$ there exist $K_1, K_2 \in \mathcal{F}\mathfrak{F}$ such that $F_i K_i = 0$, i = 1, 2 and $K_1 + K_2 = R$, is expressed in terms of (3) as follows.

 $\delta) \quad \text{For } G_1, \ G_2 \in F \otimes \text{ such that } G_1 + G_2 = R \text{ there exist } H_1, \ H_2 \in F \otimes \text{ such that } G_i + H_i = R, \ i = 1, \ 2 \text{ and } H_1 \cdot H_2 = 0^{\text{s}}.$

We shall prove that the condition δ) is equivalent to the condition that $\{\mathfrak{U}_a\}$ is a completely regular uniformity (in case β) holds).

Suppose that δ) holds. For any covering $\mathfrak{U}_a = \{G_1, \ldots, G_m\} \in \{\mathfrak{U}_a\}$ we can determine a finite number of sets L_{ν} , $H_{\nu}(\nu = 1, 2, \ldots, i)$ of \mathcal{F} such that

$$L_{\nu} < R - H_{\nu} < G_{\nu}, \ \nu = 1, 2, \dots, i,$$

 $L_{1} + \dots + L_{i} + G_{i+1} + \dots + G_{m} = R,$

by applying the condition δ) successively to the case $i = 1, 2, \ldots, m$. We have then $G_i + H_i = R$, $i = 1, 2, \ldots, m$ and $H_1 \cdot H_2 \ldots H_m = 0$. If we express H_i as $H_{i1} + H_{i2} + \cdots + H_{ir_i}$ with $H_{ij} \in \mathfrak{G}$, and construct the intersection \mathfrak{M} of the coverings $\{G_i, H_{i1}, H_{i2}, \ldots, H_{ir_i}\}$ $(i = 1, 2, \ldots, m)$, it is easily seen that \mathfrak{M} is a \varDelta -refinement⁹ of \mathfrak{U}_a and \mathfrak{M} is equal to some $\mathfrak{U}_r \in {\mathfrak{U}_a}$. Therefore the uniformity ${\mathfrak{U}_a}$ is completely regular.

Conversely, if $\{\mathfrak{U}_a\}$ is completely regular, the condition δ) holds, because for G_1 , $G_2 \in \Gamma \mathfrak{G}$ such that $G_1 + G_2 = R$ there exists a \varDelta -refinement \mathfrak{U}_{τ} of \mathfrak{M} , where $G_i = G_{i1} + \cdots + G_{ir_i}$, i = 1, 2 with $G_{ij} \in \mathfrak{G}$ and $\mathfrak{M} = \{G_{ij}; j=1, 2, \ldots, r_i, i=1, 2\}$, and hence the sets $H_i = \prod_{i=1}^{r_i} S(R - G_{ij}, \mathfrak{U}_{\tau}), i = 1, 2$ satisfy the condition δ).

Summarizing these results we obtain the following theorem of Shanin by virtue of I, Theorems 6 and 7.

⁷⁾ Cf. The biginning of this section.

⁸⁾ Here p^G means the family of all the finite sums of sets of G. Cf. loc. cit., 2).

⁹⁾ Cf. J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940, Chap. V.

K. MORITA.

Theorem 7. The bicompact extension of a T-space R with respect to an open basis \mathfrak{G} (a closed basis \mathfrak{F}) is a T_1 -space or a completely regular T-space according as R is a T_1 -space and $\mathfrak{G}(\mathfrak{F})$ satisfies the conditions α), β) (α)', β)') or R is a completely regular T-space and $\mathfrak{G}(\mathfrak{F})$ satisfies α), β), δ) (α)', β)', δ)').

We can also establish the following theorem.

Theorem 8. Let \mathfrak{G} and \mathfrak{H} be two bases of open sets of a space R such that \mathfrak{H} as well as \mathfrak{G} contains R as an element. In order that the bicompact extension of R with respect to \mathfrak{G} coincides with the bicompact extension of R with respect to \mathfrak{H} it is necessary and sufficient that for any finite number of sets G_1, \ldots, G_m of \mathfrak{G} with the property $G_1 + \cdots + G_m = R$ there exist sets H_1, \ldots, H_n of \mathfrak{H} such that $H_1 + \cdots + H_n = R$ and each H_i is contained in some G_j and conversely for any finite number of sets H_1, \ldots, H_n of \mathfrak{H} with $H_1 + \cdots + H_n = R$ there exist sets G_1, \ldots, G_m of \mathfrak{G} such that $G_1 + \cdots + G_m = R$ and each G_j is contained in some H_i .

The condition of Theorem 8 states that the uniformity $\{\mathfrak{U}_a\}$ and $\{\mathfrak{B}_{\lambda}\}$ are *equivalent* (cf. I, § 1), where $\{\mathfrak{B}_{\lambda}\}$ means the family of all the finite open coverings composed of sets of §. Hence Theorem 8 can be proved easily.

It is a simple matter to establish an analogous theorem for the case of bicompact extensions with respect to closed bases, and so it is omitted here.

§ 5. Wallman's and Cech's bicompactifications. Let R be a space. We denote by w(R) the simple extension of R with respect to the uniformity consisting of all the finite open coverings. It is clear by Theorems 5 and 7 that w(R) is bicompact and w(R) coincides with Wallman's bicompactification in case R is a T_1 -space. In the case when R is completely regular we can construct the simple extension of R with respect to the uniformity which consists of all the finite normal¹⁰ coverings. We denote this space by $\beta(R)$. Since this uniformity is a completely regular uniformity agreeing with the topology, $\beta(R)$ is completely regular and bicompact. It is easily seen by Theorem 3 that a bounded continuous real-valued function on R can be extended to a continuous function on $\beta(R)$. Hence $\beta(R)$ coincides with Čech's bicompactification if R is a T_1 -space. In case R is a completely regular T-space it is clear that w(R) coincides with $\beta(R)$ if and only if every finite open covering of R is normal. It is proved independently by Tukey

¹⁰⁾ Cf. Tukey, loc. cit., p. 46.

No. 3.]

and the present author that the latter condition holds if and only if R is normal¹¹.

In case R is a completely regular T-space we can prove that $\beta(R)$ is defined as the bicompact extension of R with respect to an open basis \mathfrak{G} which consists of all the open sets G such that $G = \{x; f(x) > 0\}$ for a non-negative bounded continuous function f(x) on $R^{(2)}$.

We shall remark finally that any bounded real-valued continuous function on a space R can be extended to a continuous function on w(R); this is an immediate consequence of Theorem 3^{13} .

¹¹⁾ Tukey, loc. cit., p. 47; K. Morita, On uniform spaces and the dimension of compact spaces, Proc. Phys-Math. Soc. Japan 23 (1940), p. 969; Star-finite coverings and the star-finite property, Math. Japonicae, 1 (1948), pp. 60-68.

¹²⁾ We do not know whether Shanin has constructed $\beta(R)$ in this way or not.

¹³⁾ This fact was pointed out first by J. Nagata for the case that R is a T₁-space. A direct proof is given in K. Morita, Shijo-Danwakai, 2nd ser. No. 15 (1949), p. 547.