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Introduction.

In his paper, we shall denote by G a fixed open seg in R
(Euclid plane defined by gwo eoordinages z, y), by f(z, y) a fixed
continuous function defined everywhere in G, which has con-
tinuous f. (Functions will be always real-valued in Chis paper.)

We shall consider he 1oarial differenial equation

)-Lz + f(z, o.x y

With (1), we shall associate the ordinary differential equation

d__y f (x, y). 2 )
dx

The curves representing the solutions of (2) which are prolonged
up to the boundary of G on both sides and cannot be prolonged
further, will be called characteristic curves (characteristics).

Through any point (x0, Y0) in G, there passes one and only one
characteristic curve y y(x, Xo, yo).

(For the precise meanings of the propositions and their proofs
el. 1)).

We know-) that a continuous function z(x, y) defined in G,
is constant on each characteristic curve, if z(x, y) has continuous
z/x, z/y or more generally is totally differentiable in G and
satisfies (1) in G.

R. Baire showed in his thesis) that, in he above, the assumption
of continuity of z/x, z/y or total differentiability of z(x, y) is
superfluous and, instead of them, only the existence of z/x, z/y
is sufficient.

We shall call it Baire’s theorem.

In this )aper we shall give a new proof of Baire’s theorem by
a method entirely different from his and somewhat generalise it.
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We have not succeeded in proving this generalisation by Baire’s
original method.

We shah c]l it genera|ised Baire’s theorem.

Generalised Baire’s Theorem.

If a continuous function z(x, y) defined in G has Oz/’x, z/y
.(not necessarily continuous), except at most at the points of an enu-
merable set, in G and satiates (1) almost everywhere in G, then
z(x, y) is constant on each characteristic curve.

P. Montel, in 1913, gave a proof for an even more general
theorem. But he used a theorem on differential form u(x, y)dx+
v(x, y)dy of which the proof he has not published’ and it seems to
us that we need additional conditions on f(x, y), for example, the
existence of f, f acl cgntinuity of f, if we want to complete
he proof of generalised Baire’s taeorem in his line of thought by
known results ).

Proof of generalised Baire’s theorem.
1. Let us denote by K the set of points (xo, Yo)of G such that

z(x, y) is constant oa the portion of each characteristic curve, con.
rained in a fixed neighbourhood of (Xo, yo).

We denote by F the set G-K. Evidently K is open and F is
closed in G.

If F is empty, z(x, y) is constant on each characteristic curve
by the definition of K and the theorem is established.

Suppose therefore, if possible, that F==0.
We denote by H the enumerable set consisting of the points at

which z(x, y)is not derivable with respect to x and with respect
to y simultaneously.

If we denote by F,, for each positive integer n, the set of
points of G such that

[z(+h, y)--z(x, y)l..lh in, Iz(x,y+l)-z(x, y)[Ikln,
whenever

n

then the sets F cover G--H and each of the sets F is closed in
G by dint of the continuity of z(x, y). As we can easily see on
account of the continuity of z(x,y), the set F can contain no
isolated point, that is, F is perfect in G.

Thus F--H is not empty and of the second category as a G in//.
Therefore there must exist a positive integer N and an open

square Q: x-aI..L, y--blL such that
0 L 1/2N, . G, (a, b} e (F--H).Q .F, (by Q we denote the
closure of Q in R).
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Then (a, b) F. Q F,

since the closure of F--H in G s F by the perfectness of F in G
and the enumerability of H.

2. By the continuity of f (x, y), f (x, y) is bounded in . We
denote by M the maximum of If(x,y)] in Q and let us write
1 L/M+ 1.

We denote by v any number such that l--b]l, then
v+ 1M__ b+ L, ,7--1M__= b--L.

Thus for any there exists unique solution of (2) defined for
x--a]<l which passes through (a, v) and lies in Q). We denote it
by y p(x, v).

Hence, if we denote by Q the domain defied by

q(x, b--1)..yq(x, b + 1), x- a l,

the curves p(x, v) fill up Q, simple-fold, when takes all values in
the open interval v--b l, and (a, b) e Q, Q.

We denote by Q the open square l$--all, I-bll in the
($, v)-plane.

Then q($, v), q/$, q/v exist an.d are continuous in Q and

)----exp (x, ,p(x, ))dx 0 in Q).

Therefore, if we denote by A the one to one mapping of Q
on Q defined by

x .z, y q($,

then the inverse mapping A- maps null sets in Q to null sets in Q.
3. Clearly

(a, b) F.Q,F.QF,v.

We take any pair of points (x, y), (x, y=.) such that

(x,, y) F. Q,, (x:, y:) Q.

Then p(x, w) v for an v in the open interval l--bll.
Now we denote by (x:, y.)"
(Case I) the nearest point of F to (x:, y,_.) on. the portion ,of the

characteristic curve y (x, v) for x, <: x x: or x: x_ x,, if
it coats.ins some points o2 F.

(Case II) the point x: x, y:-- (x,, %), if that portion contains
no point of F.

Then in both cases, by the definition of F and continuity of
.f (x, y},

z(x:;, y.:,} z(x, y.,.) ( 3 )
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q(x, %)= y is a solution d (2), contained in Q and If(x, y)]M in
Q, thus

lYe- Y. q(x, %)--(x:, %)] MI x-x:. MI x--x I.
Hence

]y,-y::l__iy,--yl+ly--y.l.]y,--yl+M]x-xl. (4)
We have

in the case I, as (x., y.) e F.Q<Fv, (x, y) QCG,
and in the case II, as x,

Also we have

z(x,, y,)--z(x, Y)INIy,-y., ( 6

as (x,, y,) F. Q<F,v, y--Y. <2L<I/N, (x, y) Q< G.
By (3), (4), (5), and (6)

z(x, y)--z(x, y.o) ]z(x y,)--z(x:, y:) N! x,--xl + NI y-y:
___

(NM+N) x--xo +NIy,-y 1.
Hence

lim z(x.., y.)-’-z(x y,)[ 2N+NM 7

whenever

(x:, y)e Q,, (x,, y,) F.

4. From (7), z(x, y), as a fuaction in Q, is totally differentiable
at almost all the points of F.Q by Stepanoff’s theorem on almost
everywhere total differentiablity). Moreover z(x, y) fulfills (1) al-
most everywhere in G and, as we have seen ia 2, A- maps null
sets in Q to null sets in Q.

Hence, if we write ($, v) z($, az($, )) for ($,

+ ox y $ x y

almost everywhere in A-:(F.Q).
Also by (7), (if we write x .Z, y, q($, v ))

(2N+ NM)(1 + i.f(x,y)!) (2N+ NM)(1 +M)
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for any ($,?,)A-(F Q’).

Certainly

as z(x,y) is constant on a characteristic curve in some aeighbourhood
of its point (x, y). if (x, y)

Consequently 0 almat everywhere in Q:,

and li $(, ,)-($, .) (1 + M)(2N+NM) f any (5., u) e Q:,

5. Therefore by Fubini’s Theorem, /9 vanishes almost every-
where in the interval
in the interval [v--b]l. Moreover, (, v) is absolutely continuoug.

as a function of , in interval --a[l for aH v in the interval

Hence (,) is constant, as a function of , in the interval
-a [l, for almost all

By the cntinuity of z(x, y), accordingly, of (, v), the constancy
of (, ) as a function of , is established for all in the interval

Thus z(x,y) is constant on any characteristic curve in Q.
This is however excluded, since (a, b)F.QO. We thus arrive at
a contradiction and this completes the proof.

We shall treat the more general equation

+t’(x,u,z) g(x, y, z)
Ox y

in a forthcoming par.
I wish to express my gratitude for the kindne with which
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