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3. Application to a topological group. We shall first prove
Boehner’s Theorem for a separable locally compact group by applying
the Theorem 1 and its Remark 1, next prove the decomposition into
irreducible factors for arbitray two sided unitary representation of
a separable unimodular locally compact group, which has been called
double unitary representation by R. Godement [8].

Theorem 3. Let G be a separable locally compact group, and
q(s) be a continuous positive define function n G. Then

(11) (s)- I(s, )d()

where () is a suitable weight function which is an N-function of yon
Neumann [1], and Z(s, ) are elementary continuous positive definite
functions for almost all in R. When q(s) is a c.ntral continuous
p.d. (positive definite) function, these x(s, ) are also central elementary
continuous p.d. functions.

Proof. Let /be L-algebra on G, then /is a complete normed*-
algebra with an approximate identity. We put

(x) Ioz(s)q(s)s (z )

the integration being by Haar measure ds on G, then clearly (x)
is a state on I. Therefore, by the Theorem 1 and its Remark 1
there exists a system of pure states (x, a), a N()-null set, such
that

q)(x) IX(x, a)do’(,).

By Riesz-Markoff-Kakutani’s Theorem, there are elementary con-
tinuous p.d. functions pc(s, a), a N, such that

x(z, ) Io(s)x(s,
For these X(s, a), we shall prove the relation (11). Let {V,.} be an
enumerable eighbourhoods system of the unite of G. For any t e G

lim fX(s, a)C’,(s)ds/l V,, x(t, a) a.e. r()
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where C,,,(s) be a caracteristic function of the set tV and V,I be
the volume for the Haar measure of G. Hence ;(t, ) are a()-
measurable for all G. Let K be a subset of G and a, b R (real
number), we denote M,,,,. being a set of all e R--N such that
a(s,)b for all s in K. Two topologies r, and r on R are
defined by the families of the subsets in R{M..,., ]a, b e R, s G} and
{M,.,,.a, b e R, K being runing over on the family of all compact
set in G}, respectively. Since G is separable, every Borel set in

R is also a Borel set in R, and the a()-measureable. Moreover
(s, ) is continuous on the product topological space G x R,, hence
X(s, )is measurable for the product measure of G and R. By
Fubini’s Theorem, for all x 2

:(s)(s’ )ds d()
(12)

Therefore we obtain the relation (11). On the case o central con-
tinuous p.d. function, we may prove in another paper wih the
decomposition of trace in C*-algebra.

Remark 2. As ar as we know, the Bochner’s Theorem for
non-separable locally compact group has never been shown. R.
Godement has given a a weak form (cf. [7]). Le G be a such
group, F be a se of all elementary continuous p.d. functions and
their weak limits. For any continuous p.d. function (s), there
exists a positive Radom measure (.) such tha

iox(s)(s)ds/p(s)" i riox(s)(s)ds/p(s)’ d()ds
for all x e L. The weak topology and compact open topology are
coincide in I’ (cf. H. Yoshizawa [11]). Then, we have

But, on this case it is essential weak. For, as Godement has seen
that F contains a p.d. function different from the elementary p.d.
function. In his central group (cf. [10]), however, it may be held.

The uniform closure R(G) of the collection of the operators of
the form L (with f e L(G)) is a C*-algebra (Lg f.g, g e L:(G) and
its * being the convolution). We do not know that the complete
relation between of the representations of R(G) and G. But we know
in L-algebra that there is a one-to-one correspondence between a
continuous representation of L’(G)(= say) and a continuous
unitary representation of G, that is, {U, } be a continuous re-
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presentation of /, then there exists a continuous unitary represen-
tation {U, . of G such that

(13) | x(s)C $gs, $ e
J

where the integration is Banach space valued integral, and the
converse correspondence be held by the same relation (13). Since
the Theorem 2 can be applied for L’-algebra, we have

Theorem 4. Let G be a separable unimodular locally compazt
group. A normal two-sided continuous unitary representation of G is a
directed integral of a system of irreducible such representations of G.")

Proof. Give representation be {U,, V, j, }. For any x ?I
and any _, we put

(14) U- Ix(s)Uds, V Ix(s-)Vds
where the integration being same way in (13). Then {U, V, j, }
is a two-sided continuous representation of ?/. For, the conjugate
linear transformation j is commute with the strong integration,

that is, (jUj, )= (j, Uj)= Vx-)(j, uj)ds--- V(-)(juj, )ds

=((V,, )ds=(V,., v), hence jU.j= V.. and the other conditions

are followed by U,V,-- V,U. and V,,-- V,V.. In order to decompose
{U,, V,, j, } into irreducible factors, first we shall prove that
{U, Vv]x, ye?l}’= {U,, Vt[s, teG}’. If BU,= U,B and BV,

V,B, then since bounded linear operators are commute with the
strong integration,

BU$ BIox(s) U,.ds Iox(s)BU$ds = Iax(s) U,Bds
hence BU UB and by the same way B.V VB. The converse
be possible to prove by the continuity of the representation { U,, V.,
j, } and similar way above one. Thus, when we consider the
decomposition of the Theorem 2 for L’-algebra ?/, {U, V, j, } is
a directed integral of a system of the irreducible two-sided re-
presentations {U.(), V(),](,I), 5,}, e N()-null set. Since {U(),
V(), ’(), } are continuous representations, there exist two-sided
continuous unitary representations {U.(), V;(), ](), }) of G for

1) (8) is the measure factor of the Haar measure of G.
2) It is obvious by the same reason with the statement of Remark 1. The

two-sided representation will be possible to define in an abstract * algebra, we

shall discuss in another paper.
3) This theorem also holds for any such representation (being not always

normal) onto a separable Hilbert spce.
4) It can be proved by the same way with (14).
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such that

for all xe I and Sze ’.. Then it remains to prove that the re-
presentation {U,, V,, j, (C)} is a directed integral of the system of
irreducible two-sided unitary representations {U,(), V,(), ](), }.
We have

(u.$, ,)= ,)de,

the left hand of (15) I(U().,

Now, we can apply the proof of theoren 3 for these functions
(U,()$, vz) instesd of X(s, ) (cf. (12)) and hence can use Fubini’s
Theorem, so (15) is equal to

As we have used sometimes (e.g. the equation (12))

x(s)(U;, ) dd() Ix(s)(U() ,.)d() ds

for any x(s) in . Thus,

for any s e G. Since $ e is arbitrary, it completes the proof.
Add in proofs. From the equation (5) in the first paper I,P.

330, we have stated without proof that almost all {U,(), @} are
representations of ?t. Now we may prove this. Since 2 is separable,
there exists an enumerable dense self-adjoint subset
of such that U,,-U.() and l][ U.,,()]]][ U,,[[[, U..,()=
5()U.,(), U.() U.,,()* for N,,(z()-null set). Put N=
For any x e 2, there exists a sequence {x:} Ao such that x:
Since [[[ and I][ U.2()-U.,()][[[] U,2--: [} for g N, we can find a bounded operator A() on @( N)
which is an uniform limit of U.(). Hence A()= U,() for N,
and it may be proved {U,(), g)} ( being representation.

Next, we have concluded from (8) that j is our j-involution
a.e. a(), there we had omitted the precise proof of the term of
a.e. a().
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Throughout these papers I and II, we have described only sum-
mary notes. Their details will be descussed in more general from
with other statements, it will appear elsewhere.
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