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112, On Completeness of Uniform Spaces

By Hidegoré NAKANO
(Comm. by K. KuNuGl, M.J.A., Nov. 12, 1953)

Let R be an abstract space. For a system of mappings a, of
R into uniform spaces S, (1€ A4), the weakest uniformity on R for
which all a,(1€ 4) are uniformly continuous, is called the weak
uniformity of R by a,(A€ 4). Concerning the completeness of the
weak uniformity we have?

Theorem 1. Let the uniformities U, of S,(2€ A) be separative
and complete. In order that the weak uniformity of R by a system
of mappings a, of R into S, (A€ A) be complete, it is necessary and
sufficient that for a system of points %, € S, (A€ A) if

I 0, (U, (,)) =0

Sfor every finite number of elements Ay € A and U,, € U,,(»=1,2,...,n),
then we can find a point x € R for which a,(x)=ux, for every A€ 4.

The purpose of this paper is to give some generalization of
this Theorem I and its applications.

I

For a uniform space R with uniformity B, a system of map-
pings a. (v € ") of R into a uniform space S with uniformity U is
said to be equi-continuous, if for any Uell we can find Ve B such
that

a: (V(®)) T Ulalx)) for every x€ R and vye .

With this definition we have

Theorem II. Let the uniformity U, of S.(2€ A) be separative
and complete. For a double system of mappings a,,, of an abstract
space R into S, (v € I, A€ A), there exists the weakest uniformity on
R for which a;,, (Y € I)) is equi-continuous for every A€ A, and in
order that this uniformity on R be complete, it is necessary and
sufficient that for a system of points x,A€ S (v el A€ A) if

II 1I an)‘vhl (UM (xr9xv) ) =*= 0
V=1 TGI')‘V
Sfor every finite number of elements A, € 4 and U,, € U,, (v=1,2,...,n),
then we can find a point x € R such that
Zor = Qra (&) for all yel,Aed.

1) H. Nakano: Topology and linear topological spaces, Tokyo Math. Book Ser.
II, Tokyo (1961), § 35 Theorem 8. In the present paper we make use of terminologies
and notations in this book. This book will be denoted by TLTS.
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In order to prove this Theorem II, we shall define power of
a uniformity. Let S be a uniform space with uniformity 1. For
another abstract space 4, considering every system x,€S(2€ 4) a
point (x,),e4, We obtain a space, which is called the power of S by
A and denoted by S4. For each U €U, putting

Ud(@\)rea={()rea : ¥r€ U(x,) for every ie 4},
we obtain a connector U4 in S4. Furthermore we see easily that
there exists uniquely a uniformity on S4 of which U4(Ue€l) is a
basis. This uniformity on S4 is called the power of U by 4 and
denoted by 114, With this definition we can prove easily that if U
is separative, then W4 also is separative; and if 1 is complete, then
114 also is complete.

For a system of mappings a,(21€ 4) of a uniform space R into
a uniform space S with uniformity U, it is evident by definition
that a\(1€ A) is equi-continuous if and only if the mapping a of
R into the power S4 with uniformity U4:

a(@) = (ar (@) rea €S* (€ R)
is uniformly continuous. Therefore for a system of mappings ay,
of an abstract space R into uniform spaces S,(v€1l),2€4), the
weak uniformity of B by the system of mappings a, of R into the
uniform spaces S,"*(2€ 4) :
ax(®) = (0, () rer, € S (2 € R)

is the weakest uniformity on R for which a,,\(y € ) is equi-con-
tinuous for every i€ A. Therefore we conclude Theorem II im-
mediately from Theorem I.

In Theorem II, if all uniform spaces S,(i€ 4) coincide with a
complete separative uniform space S with uniformity U, and for
a system of points x,,,€ S(ye 3, 1€4) if

I 1I OT’AV_I(UV (%nv))*o

Vel ver,,
for every finite number of elements A, € A and U, € U(v=1,2,...,n),
then a,,=ay,» implies .=, because 1l is seperative by
assumption. Therefore we conclude from Theorem II

Theorem III. Let a\(1€ A) be a system of mappings of an abstract
space R into a uniform space S with a complete separative uniformity
U. For a system of subsets A, T A(v € I') there exists the weakest
uniformity on R for which ax(A€ 4;) ©s equi-continuous for every
vel', and if A= EAT and for any v.,%: €I’ we can find an element

v € " such that A, +A:, T 4y, then in order that this weakest uni-

formity on R be complete, it is necessary and sufficient that for a
system of points x € S(A€ A) if

I a,(U))==0

ML
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for every veI and Ue€ll, then we can find a point x € R such that
a(x)=w, for every A€ A.

Let A be the totality of mappings of an abstract space R into
a uniform space S which a complete separative uniformity Uu.
Every point x€ R may be considered a mapping of U into S as
a(x)eS(aeN). For a system of subsets R, R(i€ A4) there exists
by Theorem III the weakest uniformity on U for which R, is
equi-continuous as a system of mappings for every 1€ A. This
weakest uniformity on 2 is complete ®, because for any system of
points y, € S(x € R) there exists obviously a€ % for which a(z)=y.
for every x € R.

A mapping a of R into S is said to be bounded in a subset
R, R, if the image a(R,) is a bounded set® of S. For a uniformity
on A if R, is equi-continuous as a system of mappings of U into
S, then we see easily by definition that every convergence by a
Cauchy system in % is a uniform convergence as mappings of R,
into S. Therefore on the totality of those mappings of R into S
which are bounded in R, for every i€ 4, the weakest uniformity
for which R, is equi-continuous for every 2€ 4, is complete. We
conclude further that if R is a topological space, then on the
totality of those mappings of R into S which are continuous in R,
by the relative topology for every A€ A, the weakest uniformity
for which R, is equi-continuous for every i€ A, is complete. Fur-
thermore we obtain likewise that if R is a uniform space, then
on the totality of those mappings of R into S which are uniformly
continuous in R, by the relative uniformity for every i€ 4, the
weakest uniformity for which R, is equi-continuous for every A€ 4,
is complete.

11

ILet R be a linear space and S a linear topological space with
linear topology LB. A system of linear operators T,(i1€ 4) on R into
S is said to be bounded, if the system T,x(2€ 4) is a bounded set
of S for every x€ R. For a bounded system of linear operators
T,(A€ 4) on R into S we see easily that there exists uniquely a
linear topology on R of which

Ag {z: T\xeV} (VeRB)

is a basis. Furthermore we see easily that the induced uniformity
from this linear topology on R is the weakest uniformity on R for

2) This fact was proved by N. Bourbaki, Topologie générale, Vol. 3, Chapter
10, espaces fonctionnels, Paris (1949).
8) TLTS §32.
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which T,(A€ 4) is equi-continuous. This linear topology on R is
obviously convex, if ¥ is convex. Therefore, recalling Theorem 5
in TLTS § 55, we obtain by Theorem III

Theorem IV. Let T\(A€ A) be a system of linear operators on
a linear space R into a limear topological space S with a complete
separative linear topology B. For a system of subsets A, A(vyel),
if Ty(A€ A,) is a bounded system for every v e€I, then there exists
uniquely a linear topology on R whose induced uniformity on R is
the weakest uniformity for which T,(A€ A;) is equi-continuous for
every v € I’. Furthermore if A=T€2[AT and for any v.,v,€ " we can

find an element v € I' such that A, i A, T Ay, then in order that this
linear topology on R be complete, it is mecessary and sufficient that
for a system of elements x, € S(A€ A) if

D{x: Thae V+ x2}==0

A€4
for every v €I and Ver%, then we can find an element xz€ R for
which T,x=ux, for every i€ A.

Let R be an abstract space and S a linear topological space
with a complete separative linear topology B. For a subset R, R
a mapping q of R into S is said to be bounded if the image a(R,) is
a bounded set of S. For a system of subsets R, R(2€ 4), denoting
by 2 the totality of those mappings of R into S which are bounded
in E, for every A€ A, we obtain a linear space A, defining

(aa + Bb) (x) = aa(x) + Bb(x) (x € R)
for every a,b e A and real numbers a,8. Furthermore every point
2 € R may be considered a linear operator on R into S as a(x) €S
(ae ) and R, is a bounded system of linear operators for every
A€ A. For a system of elements x, € S(ye%R,\) if

I {a:ay)eV +a,}=+0
!lGR)‘

for every A€ A and Ve ®B, then x,(y € R,) is a bounded set of S for
every 1€ A4, and hence putting a(y)=x, for yeAER; and q,(y)=0
€4

for every other point y, we have a€?. Therefore we obtain by
Theorem IV

Theorem V. Let R be an abstract space and S a linear topo-
logical space with a complete separative linear topology B. For a
system of subsets R, R(1€ A) such that for any i,k € A we can find
an element A€ A for which R, + R, TR,, denoting by U the totality
of those mappings of R into S which are bounded in R, for every
A€ A, we obtain a complete linear topological space A such that

(aa + Bb) () = aa(x) + Bb(x) (x € R)
Sfor every a,b€ A and real numbers a,B, and
{a: a(R,) TV} (Ae 4, VeDB)
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18 o basis of U. Furthermore if B is convex, then A also is convex.
If R is a linear space and for any A, € 4 and real numbers
a,8 we can find an element 1€ 4 such that aR, x B8R, R,, then,
denoting by U the totality of those linear operators on R into S
which are bounded in R, for every i€ A we see easily that
ygﬂ{a: a) eV + 2} =0

for every 1€ A and Ve B implies
Loy, +py, = ALy, + BTy,

for every v,¥, egﬁ,‘ R, and real numbers «,8. Therefore we obtain
further

Theorem VI. Let R be a linear space and S a linear topological
space with a complete separative linear topology B. For a system
of subsets R, R(A€ A) such that for any A, € A and real numbers
a,8 we can find an element 2€ A such that aR, x BR,, R, denoting
by T the totality of those linear operators on R into S which are
bounded in R, for every i€ A, we obtain a complete linear topological
space T such that

{T: TR, TV} (A€ d, VeDB)

18 & basis of T. Furthermore if B is convex, then I also is convex.

This Theorem VI is a generalization of Theorems 1 and 8 in
TLTS §67.



