138. On Concircular Scalar Fields

By Yoshihiro Tashiro

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 13, 1965)

In a previous paper [1], the author determined complete Riemannian manifolds admitting a concircular scalar field [1, Theorem 1] and, in particular, those admitting a special concircular scalar field [1, Theorem 2]. If M is an n-dimensional Riemannian manifold with metric tensor field $g_{\mu\lambda}$, and we denote by $\{^{\kappa}_{\mu\lambda}\}$ the Christoffel symbol and by Γ the covariant differentiation with respect to $\{^{\kappa}_{\mu\lambda}\}$, then a concircular scalar field ρ is by definition a scalar field satisfying the differential equation

where ϕ is a scalar field and will be called the *characteristic function* of ρ . A *special* concircular scalar field is by definition a concircular one satisfying

(2)
$$\nabla_{\mu}\nabla_{\lambda}\rho = (-k\rho + b)g_{\mu\lambda}$$

with constant coefficients k and b. We shall call k the *characteristic* constant of ρ .

In the present paper we shall show that, if a Riemannian manifold admits functionally independent concircular scalar fields, then they are special concircular scalar fields having the same characteristic constant, and that a concircular scalar field, which is not invariant under an infinitesimal isometry, is also a special concircular one. In this light, we may say that the special concircular scalar field is not so special.

A point is called a stationary or ordinary point of ρ according as the gradient vector field $\rho_{\lambda} = \theta_{\lambda} \rho$ vanishes there or not. We notice that the characteristic function ϕ of ρ is a differentiable function of ρ itself in a neighborhood of an ordinary point of ρ . We shall first show the following

Lemma 1. If ρ and σ are concircular scalar fields functionally dependent of each other, then σ is linear in ρ with constant coefficients in a neighborhood of an ordinary point of ρ .

Proof. Suppose that σ satisfies the equation

$$\nabla_{\mu}\sigma_{\lambda} = \psi g_{\mu\lambda} ,$$

where $\sigma_{\lambda} = \partial_{\lambda} \sigma$. By our assumption, we may put $\sigma_{\lambda} = A \rho_{\lambda}$, A being a proportional factor. By substituting this into (3) and using (1), we have

$$(\partial_{\mu}A)\rho_{\lambda}=(\psi-A\phi)g_{\mu\lambda}$$
.

642 Y. Tashiro [Vol. 41,

Since the matrix $(g_{\mu\lambda})$ is non-singular, it follows that $\partial_{\mu}A=0$ and hence A is a constant. Thus σ is of the form

$$\sigma = A\rho + B$$
. Q.E.D.

Applying Ricci's identity to (1), we obtain the equation

(4)
$$K_{\nu\mu\lambda^{\kappa}}\rho_{\kappa} = K_{\nu\mu\lambda\kappa}\rho^{\kappa} = -\frac{d\phi}{d\rho}(\rho_{\nu}g_{\mu\lambda} - \rho_{\mu}g_{\nu\lambda}),$$

where $K_{\nu\mu\lambda}^{\kappa}$ is the curvature tensor field of M. If ρ is, in particular, a special concircular scalar field, then we have

(5)
$$K_{\nu\mu\lambda\kappa}\rho^{\kappa} = k(\rho_{\nu}g_{\mu\lambda} - \rho_{\mu}g_{\nu\lambda}).$$

We shall have the following

Theorem 1. If two concircular scalar fields ρ and σ are functionally independent of each other, then they are special concircular scalar fields having the same characteristic constant.

Proof. The function ψ in (3) is a differentiable function of σ and we obtain the equation

(6)
$$K_{\nu\mu\lambda\kappa}\sigma^{\kappa} = -\frac{d\psi}{d\sigma}(\sigma_{\nu}g_{\mu\lambda} - \sigma_{\mu}g_{\nu\lambda})$$

similar to (4). Contracting (4) with σ^{λ} and (6) with ρ^{λ} respectively and taking account of skew-symmetry of $K_{\nu\mu\lambda\kappa}$ in κ and λ , we have

$$\left(rac{d\phi}{do}\!-\!rac{d\psi}{d\sigma}
ight)\!(\sigma_
u
ho_\mu\!-\!\sigma_\mu
ho_
u)\!=\!0$$
 .

Since ρ and σ are functionally independent, we see that the first factor should vanish and $\frac{d\phi}{d\rho} = \frac{d\psi}{d\sigma}$ is equal to a constant, say -k.

Thus ϕ and ψ are linear functions of ρ and σ respectively.

Theorem 2. If an n-dimensional Riemannian manifold M admits n-1 concircular scalar fields $\rho_a(a=1,\dots,n-1)$ and they are functionally independent, then the manifold M is of constant sectional curvature.

Proof. By means of Theorem 1, we have now the equations $[K_{\nu\mu\lambda\kappa}-k(g_{\nu\kappa}g_{\mu\kappa}-g_{\mu\kappa}g_{\nu\lambda})]\rho_a^{\kappa}=0$

from equations similar to (5). Since the matrix (ρ_a^{κ}) is of rank n-1, we can put

$$K_{
u\mu\lambda\kappa}\!-\!k(g_{
u\kappa}g_{\mu\lambda}\!-\!g_{\mu\kappa}g_{
u\lambda})\!=\!L_{
u\mu\lambda}H_{\kappa}$$
 ,

where $L_{\nu\mu\lambda}$ and H_{κ} are proportional factors. However, by virtue of skew-symmetry of the left hand side in κ and λ , the above equation should be equal to zero, that is,

$$K_{\nu\mu\lambda\kappa} = k(g_{\nu\kappa}g_{\mu\lambda} - g_{\mu\kappa}g_{\nu\lambda})$$

and M is of constant sectional curvature.

Q.E.D.

In a compact manifold M, there exist exactly two stationary points of a concircular scalar field [1, Theorem 1, C)]. Moreover, the only special concircular scalar field admitted in a compact manifold

M is one having a positive characteristic constant, and the manifold M is then a spherical space [1, Theorem 2, III)]. It follows from these facts that

Theorem 3. If a compact Riemannian manifold M admits functionally independent concircular scalar fields, then M is a spherical space.

Next let a vector field v^{κ} be an infinitesimal isometry and denote by £ the Lie differentiation with respect to v^{κ} . Then we know the equations

and

(8)
$$\pounds\{_{\mu\lambda}^{\kappa}\} = \nabla_{\mu}\nabla_{\lambda}v^{\kappa} + v^{\nu}K_{\nu\mu\lambda^{\kappa}} = 0$$

and that £ commutes with the covariant differentiation \mathcal{F} . We shall prove the following

Theorem 4. If a concircular scalar field ρ is not invariant under an infinitesimal isometry v^{κ} , that is, $\pounds \rho \neq 0$, then ρ is a special concircular scalar field.

Proof. Applying £ to (1), we have

and see that $\pounds \rho$ is also a concircular scalar field. If $\pounds \rho$ is functionally independent of ρ , then the theorem follows from Theorem 1. If $\pounds \rho$ is functionally dependent of ρ , then we can put

$$\mathfrak{L}\rho = v^{\kappa}\rho_{\kappa} = A\rho + B$$

by means of Lemma 1. Differentiating covariantly (10) and taking account of (1), we have

$$(7_{\lambda}v^{\kappa})\rho_{\kappa} + \phi v_{\lambda} = A\rho_{\lambda} ,$$

and, further differentiating (11) and taking account of (7), (8), and (1),

$$-v^{
u}K_{
u\mu\lambda\kappa}
ho^{\kappa}\!+\!(\partial_{\mu}\phi)v_{\lambda}\!=\!A\phi g_{\mu\lambda}$$
 .

By contraction of this equation with ρ^{λ} and substitution of (10), we obtain

$$(\partial_{\mu}\phi)(A
ho+B)\!=\!A\phi
ho_{\mu}$$
 .

The solution of this equation is given by the form

$$\phi = -k\rho + b$$

with constant coefficients k and b. Thus ρ is a special concircular scalar field. Q.E.D.

By the same reason as that for Theorem 3, we have

Theorem 5. If a compact Riemannian manifold M admits an infinitesimal isometry v^{κ} and a concircular scalar field which is not invariant under v^{κ} , then the manifold M is a spherical space.

Reference

[1] Y. Tashiro: Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc., 117, 251-275 (1965).