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109. A Non-Commutative Integration Theory for a Semi-Finite
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By Kazuyuki SAITO
Department of Mathematics, T0hoku University

(Comm. by Kinjird KUNUGI, M. J. A.,, May 12, 1970)

We shall extend Feldman’s result on ‘‘Embedding of AW*-alge-
bras” to semi-finite AW*-algebras, that is, we shall show that a semi-
finite A W*-algebra with a separating set of states which are completely
additive on projections (c.a. states) has a faithful representation as a
semi-finite von Neumann algebra. Full proofs will appear elsewhere.

Let M be a semi-finite AW*-algebra with a separating set © of
c.a. states. By a c.a. state ¢ on M we mean a state on M such that
for any orthogonal family of projections {e;} in M with e=3,¢e;, ¢(e)
=2 P(e;)). Let C be the algebra of ‘“measurable operators” affiliated
with M [6]. Denote the set of all positive elements, projections, par-
tial isometries and unitary elements in M by M*, M,, M,, and M,,
respectively.

Let € be the set of finite linear combinations of elements in {e*wa,
w €S, a e M}, where (a*wa)(x)=w(axa*) for all x ¢ M. For any posi-
tive number ¢ and any positive integer n, put V., (@, @, - -, ®,)(0)
={a;|w(@)|<e,i=1,2, - -n, @, W, - -, w, ¢ S} and we define the ¢(&)-
topology of M by assigning sets of the form V., (@, ®,,- - -, ®,)(0) to
be its neighborhood system of 0. Since & is a separating set of con-
tinuous linear functionals on M, this topology is the separated locally
convex topology defined by the family of semi-norms ¢,(x) =|w(x)|, ® Q.
Then we have, by [3, Lemma 3],

Lemma 1. Let {e,}ac A be an orthogonal set of projections in M
such that e=Sup [> {e.,,aecl}, ADIec F(A) where F(A) is the family
of all finite subsets of Al, then > {e,, a ¢ I}—e(l ¢ F(A)) in the o(S)-
topology.

Lemma 2. Any abelion AW*-subalgebra, especially, the center
Z of M is a W*-algebra ([T]) and the o(S)-topology restricted to this
subalgebra is equivalent to the a-topology on bounded spheres.

Let Z be the set of all [0, + o]-valued continuous functions on the
spectrum of Z [1], then we have

Theorem 1. There is an operation @ from M* to Z having the
following properties:

( i ) @(h1‘|‘ h2)=@(h1) +¢(h2) h‘l’ hz e M+ >

(ii) O(AR)=2A@(h) if A is a positive number and h e M*;
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(iii) O(st)=t - O(s) se M+, teZ*;

(iv) Ouoau)=9(a) if a ¢ M* and u ¢ M, ;

(v) forany ae Mt with ®(a)=0,a=0;

(vi) for every directed increasing net {a,} th M* such that a,—a
in the o(©)-topology for some a in M, &(a,) t ¥(a) in Z;

(vii) for every mom-zero a in M*, there exists a nonzero be M*
majorized by o such that O(b) e Z+.

Then by the above theorem and [3, Lemma 2], we have

Proposition 1. In Theorem 1, let P be the set {se M, s=0,
D(s) e Z+*}, then P s the positive part of a two-sided ideal N and there
exists a unique linear operation & on N to Z which coincides with @ on
P; moreover this linear operation satisfies the following properties;

(a) If teR with t=0 and dt)=0 only if t=0;

(b) &(st)y=d(ts) if s¢ M and t e RN;

(¢) B(st)=s-B(t)if seZ and teN;

(d) let {t,} be a directed increasing net of positive elements in N
such that t,—t in the a(S)-topology for some positive element t in M
and if {@(t,)} is uniformly bounded, then t ¢ N and d(t)=Sup (B¢, 1};

(e) every non-negative element in M is the supremum of a set
of non-negative elements in N.

Now let p be a finite projection in M then there is an indexed
family {e,} of mutually orthogonal central projections such that > ,e,
=1 and that for each y pMe,p is a o-finite finite AW*-algebra. There-
fore by Proposition 1(e), there is a sequence {p®},2; of mutually

orthogonal projections in N such that pe,,:i} p¥. Write D(p)
n=1

=3, Z”] d(pw) in Z. If pis a properly infinite projection with central
n=1

carrier z(p), D(p)(w) is defined as oo 2(p)(w), thus we have

Theorem 2. In M, we can define a dimension function D(e) with
values in Z for all projections e e M, in such a way that

(i) D(e)w)<oo except on a non-dense set if and only if e is
finite ;

(ii) if p,qe M, and pq=0, then D(p+q)=D(p)+D(q);

(iii) for any indexed chain of projections {e,; A & A} in M, D( 1\./46‘)

=Sup {D(e), 2¢ 4};

(iv) if u is in M,;, then D(u*w)=D(uu*);

(v) foreeZ,and peM, D(e)+0 and D(ep)=eD(p).

Now along the same lines with [8], we introduce the notion of the
“‘convergence nearly everywhere” of sequences in C.

Definition 1. We say that a sequence {x(n)},=, of C converges
nearly everywhere (or converges n.e.) to an element x in C if for any
positive ¢, there exist a positive integer n,(¢) and an SDD (strongly
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dense domain (see [6, Definition 8.11)) {e,(¢)} such that (x(n)—x)[e,(¢),1]
e M and ||(2(n)—2)[eqe), 1]1]|.<e for all n=n,(¢c), where we write
Iz, 11||..=||z|/(see [6, Theorem 3.1, Lemma 5.2]).

Remark. (1) We must note that a limit nearly everywhere is
unique. Making use of the dimension function (Theorem 2), by the
same way as that of I. E. Segal, we have: (2) if {x(n)},, and {y(n)},2,
are sequences in C converging n.e. to  and ¥ in C, respectively, then
{x(n) + y(n)},, converges to x+y n.e., (3) let {x(n)},=, be a sequence in C
which converges n.e. to z in C and suppose that there is a central projec-
tion e which is o-finite with respect to the center such that z(n)[1—e, 1]
=0 for all n, then there exists a strictly increasing subsequence {n;}
of positive integers such that {x(n,)*},=, converges n.e. to z* and (4)
in (8), for any ¥ in C, there are subsequences {k;} and {m,} of positive
integers such that z(k)y—zy(i—oo) and yx(m;)—yx(i—oo) nearly
everywhere.

Theorem 3. There exists a [0, + col-valued function t (a faithful
semi-finite trace) on M* having the following properties:

(i) Ifa, beM*, then t(a+b)=7(a)+7(b);

(i) if ae M* and A is a positive number, t(Aa)=At(a) (we recall
here 0. +o00o=0 by our conventions);

(iii) ifaeM* and ue M,, t(u*au)=7(a);

(iv) 7(a)=0 (a e M*) implies a=0;

(v) for any non-zero o in M*, there is a non-zero b in M* ma-
jorized by a such that t(b)<oo;

(vi) let {a,} be a directed increasing net of positive elements in
M such that a,—a in the o(S)-topology for some a ¢ M, then z(a,) 1 v(@).

Then, there are a two-sided ideal &, whose positive part is
{a; a e M*, 7(a)<oo} and a linear non-negative functional ¢ on & coin-
cides with 7 on {a; @ ¢ M*, 7(a) < oo} with the following properties:

(a) t@y)=tyx)ifrxorye&, xand ye M,

(b) tw*xu)=7(x) if x ¢ & and u ¢ M,.

Let < be the set {a; a ¢ M, 7(LP(a))< oo} (where LP(a) is the left
projection of a in M), then & is a two-sided ideal contained in & such
that £,=9,.

Definition 2. An element z in C is integrable if there exists a
sequence {x(n)},2, in & such that [#(n), 1]—-x(n.e.) and 7(|2(n) —a(m)|)
—0 as n and m—oo. The integral of z, in symbol #(x), is defined by
F(x)=lim t(x(n)). The set of all integrable elements in C is denoted

by L\(M, 7).

Remark. Note first that the value 7(x) of the integral of x in
fact exists and is finite and that it is uniquely determined by any
particular such sequences. Moreover by remark (2) following Defini-
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tion 1, # is linear on L'(M, 7). Secondly we note that if x ¢ &, then
[z, 1] is integrable and its integral is equal to #(x).

By the remark following Definition 1, we have

Proposition. 2. (1) For any se M and te L\M, 7), [s, 11, tls, 1]
and t* ¢ L\M, 7). Moreover, #([s, 11t) =%(t[s, 1]) and 7(t*¥) =7(t) (where
@ is the complex conjugate of a complex number a).

(2) If p(e M,) is integrable, then p e £, and Z([p, 1)) =1(p).

() For any te LM, 7), we define ||t|,=Sup {|7(s, 118)|, se M,
IIs||<1}. Then the function t—||t||,(t e L'(M, 7)) satisfies actually the
properties of a norm:

(@) 0| t|,<oo for te LYM, 7) and |t|,=0 if and only if t=0,

() ls+tlh=lsl+ ¢l of s, t e LM, 7),

() |Atli=1|2]|-||tl, if te L"(M, 7) and A is a complex number,

@ Ef= 1t

(&) if seM, then ||[s, 11¢], < ||s|||[¢]l, and ||tls, LI, = sl IE],-

(4) Theintegral of a non-negative integrable element of C is non-
negative.

Definition 3. Let L*(M, z) be the set {¢; te C, t*t=|t|f e L'(M, 7)}
and we define ||t|,=7(|tP)"* for t e L*(M, 7).

Proposition 3. (1) If s,te L M,t), then s*teL'(M,r) and
[Z(s*D < |Is Ikt

@) |tl,=sup {||ts], lI8l.=1,ts e L'(M, 7)} (for teL*M, 7)) and
LXM, 7) is a pre-Hilbert space with respect to the norm || |, More-
over this norm satisfies:

@ Nt*L=IItl.=1t]ll. for t e L*(M, 7),

) foranyseM andte LX(M,7),[s, 11t and tls, 1] are in LX(M, 7).
Moreover ||[s, 11t <|Isl||t]. and |[tls, < |[s||l|t].-

Theorem 4. F(={[x,1],xe F}) is norm-dense in L*(M,7) and
LM, 7), respectively. Moreover L'(M, 7) (resp. LA(M, 7)) is a Banach
space with respect to the norm | | (resp. | ). In particular,
LX(M, ) is a Hilbert space.

Now let us consider the left regular representation of M, which
is defined by =, (x)a=[z,1la,a e L*(M,7),x e M. Then by Proposition
3, m,(x) is a bounded linear operator on L*(M, r) for each ¢ M. On
the other hand r,(x)=0, then [, 1la=0 for all @ ¢ LX(M, 7). Since 7 is
semi-finite, there is an orthogonal set {e(a)} of projections in & such
that > e(@)=1. Therefore FC L*M, r) implies that ze(a)=0 for all
«. Hence by [4, Lemma 2.2], x=0. Therefore x,(-) is a *-isomorphism
of M into B(L*(M, 7)) (where B(L*M, 7)) is the algebra of all bounded
linear operators on L*(M, 7)).

Let {g9:}:., be a set of mutually orthogonal projections of M with
e=izlj g, then for each a ¢ F
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|z (e)la, 11— ¢ZJ m,(9)la, 11])
=7(a*(e —iZJ g.)a)

for any finite subset J of I. Therefore by Theorem 3 (v) and Theorem
4, > m(g,)—m(e) strongly. Thus 7,(M) is an AW*-subalgebra of
ied

B(LAX(M, 7)) in the sense of [5.3, Definition].

Let M be the weak closure of 7;(M), then M is a von Neumann
algebra on L*(M, 7).

Theorem 5. w,(M)=M, that is, M is o semi-finite W*-algebra.
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