179. On Some Invariant Subspaces

By Yoshiki OHNo
The College of General Education, Tohoku University, Sendai

(Comm. by Kinjirô Kunugi, m. J. a., Sept. 12, 1970)

Let X be a compact Hausdorff space and let A be a function algebra on X. Throughout this paper, ϕ will be a fixed multiplicative linear functional on A which admits a unique representing measure m. Further we assume that the Gleason part of ϕ is non trivial. We denote by A_{0} the maximal ideal associated with $\phi ; A_{0}=\{f \in A: \phi(f)=0\}$. Let $H^{2}=H^{2}(d m)$ be the closure $[A]_{2}$ of A in $L^{2}=L^{2}(d m)$. We put $H_{0}^{2}=\left\{f \in H^{2} ; \int f d m=0\right\}$. We shall refer to Browder [1] for the abstract function theory in this situation.

Let M be a closed subspace of $H^{2} . \quad M$ is called simply invariant if $\left[A_{0} M\right]_{2} \subset M$. We call M complementary invariant if $H^{2} \ominus M$, the orthogonal complement of M in H^{2}, is simply invariant. The purpose of this paper is a characterization of the complementary invariant subspace.

It is well known that L^{2} admits the orthogonal decomposition $L^{2}=H^{2} \oplus \bar{H}_{0}^{2}$, where the bar denotes the complex conjugation. We denote by P the orthogonal projection of L^{2} onto $H^{2} \quad$ As Wermer has shown, there exists an inner function Z such that $H_{0}^{2}=Z H^{2}$. (See [1] Lemma 4.4.3 for our situation.) We define the backward shift operator T on H^{2} by

$$
T f=\frac{f-\int f d m}{Z} \quad\left(f \in H^{2}\right) .
$$

Theorem. The complementary invariant subspaces of H^{2} are precisely the subspaces of the form

$$
P\left[T q \cdot \bar{H}^{2}\right]
$$

where q is an inner function. q is determined by the subspace up to a constant factor.

Proof. Let M be a complementary invariant subspace of H^{2}. Then $N=H^{2} \ominus M$ is a simply invariant subspace of H^{2}. Therefore, by the generalized Beurling theorem (for instance, see [1] Theorem 4.3.5), N has the form $N=q H^{2}$, where q is inner. For simplicity, we put $h=T q$. Evidently $h \in L^{\infty} \cap H^{2}$. Since $\int Z d m=0$ and q is inner, we have

$$
\left.(h, q f)=\left(\frac{q-\int q d m}{Z}, q f\right)=(1, Z f)-\int q d m \cdot(1, Z q f)=0^{*}\right)
$$

for every $f \in H^{2}$. Thus $h \perp q H^{2}=N$. Hence $h \in M=H^{2} \ominus N$. We next show that $M \supset P\left[h \cdot \bar{H}^{2}\right]$. Let $f \in N$. Since N is A-invariant and $h \in M$, we have $(f, h \bar{g})=(g f, h)=0$ for all $g \in A$. Thus $(f, P(h \bar{g}))=(f, h \bar{g})=0$ for all $g \in H^{2}$. Hence $N \subset H^{2} \ominus P\left[h \cdot \bar{H}^{2}\right]$ and so $M \supset P\left[h \cdot \bar{H}^{2}\right]$. Let now $f \in M \ominus P\left[h \cdot \bar{H}^{2}\right]$. Then, for all $g \in H^{2}$, we have

$$
\begin{aligned}
0 & =(P(h \bar{g}), f)=(h \bar{g}, f)=(\bar{f} h, g) \\
& =\left(\bar{f} \frac{q-\int q d m}{Z}, g\right)=\left(\frac{q}{Z} \bar{f}, g\right)-\int q d m \cdot \int \overline{g f Z} d m=\left(\frac{q}{Z} \bar{f}, g\right) .
\end{aligned}
$$

Thus $\frac{q}{Z} \bar{f} \perp H^{2}$, and $\frac{q}{Z} \bar{f} \in \bar{H}_{0}^{2}$, so $\frac{Z}{q} f \in H_{0}^{2}$. Therefore $f \in \frac{q}{Z} H_{0}^{2}=q H^{2}$ $=N$. But $f \in M \perp N$. Hence $f=0$ a.e., so $M=P\left[h \cdot \bar{H}^{2}\right]$.

Conversely, suppose that $M=P\left[T q \cdot \bar{H}^{2}\right]$ for some inner function q. We show that M is complementary invariant. By the generalized Beurling theorem, it suffices to see that $H^{2} \ominus M$ has the form $q \cdot H^{2}$. Clearly $q H^{2} \subset H^{2}$. If $f \in H^{2}$, then

$$
\begin{aligned}
(q f, P(T q \cdot \bar{g})) & =(q f, T q \cdot \bar{g})=\left(q f, \frac{q-\int q d m}{Z} \bar{g}\right) \\
= & (f, \bar{Z} \bar{g})-\int \bar{q} d m(q f, \bar{Z} \bar{g})=0 \quad\left(\forall g \in H^{2}\right) .
\end{aligned}
$$

Hence $q H^{2} \subset H^{2} \ominus M$. Next, suppose that $f \in\left\{H^{2} \ominus M\right\} \ominus q H^{2}$. Since $f \perp M$, we have

$$
\begin{aligned}
0 & =(f, P(T q \cdot \bar{g}))=(f, T q \cdot \bar{g})=\left(f, \frac{q-\int q d m}{Z} \bar{g}\right) \\
& =(f \bar{q}, \bar{Z} \bar{g})-\int \bar{q} d m \cdot(f, \bar{Z} \bar{g})=(f \bar{q}, \bar{Z} \bar{g}) \quad\left(\forall g \in H^{2}\right) .
\end{aligned}
$$

Thus $f \bar{q} \perp \bar{Z} \bar{H}^{2}=\bar{H}_{0}^{2}$. But $f \bar{q} \perp H^{2}$ as $f \perp q H^{2}$. Hence $f \bar{q} \perp H^{2} \oplus \bar{H}_{0}^{2}=L^{2}$. Therefore $f \bar{q}=0$ a.e., hence $f=0$ a.e.. Thus $H^{2} \ominus M=q \cdot H^{2}$.

Corollary. The following properties are equivalent.
(I) H^{2} and the classical Hardy space $H^{2}(d \theta)$ are isometrically isomorphic to each other.
(II) For every non trivial closed subspace N of H^{2} invariant under multiplication by functions in $A, M=H^{2} \ominus N$ has the form

$$
M=P\left[T q \cdot \bar{H}^{2}\right]
$$

where q is an inner function.
Further, if these conditions hold, then every complementary in-

[^0]variant subspace M is the closed linear span of $\left\{T^{n} q\right\}_{n=1}^{\infty}$ for some inner function q.

Proof. (I) \Rightarrow (II). It is easy to see that the simple invariance and the A-invariance are equivalent in the classical case. The assertion follows from Theorem.
(II) \Rightarrow (I). Suppose that (I) fails. Then $N=\left\{f \in H^{2} ; \int f \cdot \bar{Z}^{n} d m=0(\forall n)\right\}$ is non trivial and A-invariant. By the assumption, $H^{2} \Theta N=P\left[T q \cdot \bar{H}^{2}\right]$ for some inner function q. As in the proof of Theorem, we have $N=q H^{2}$. But this contradicts the fact that N is not simply invariant.

Now suppose that (I) or (II) holds. Then H^{2} is the closed linear span of $\left\{Z^{n}\right\}_{n=0}^{\infty}$. It follows that M is the closed linear span of $\left\{P\left(T q \cdot \bar{Z}^{n}\right)\right\}_{n=0}^{\infty}$. It suffices to see that for $n=0,1,2, \ldots$

$$
\begin{equation*}
P\left(T q \cdot \bar{Z}^{n}\right)=T^{n+1} q \tag{1}
\end{equation*}
$$

Clearly $P(T q)=T q$. By the induction on n, we show that for $n=1,2, \cdots$,
(2)

$$
T q \bar{Z}^{n}=T^{n+1} q \oplus\left\{\sum_{j=1}^{n} \int T^{j} q d m \bar{Z}^{n-j+1}\right\}
$$

We have

$$
\begin{aligned}
T q \cdot \bar{Z} & =\frac{T q-\int T q d m}{Z}+\left(\int T q d m\right) \cdot \bar{Z} \\
& =T^{2} q \oplus\left(\int T q d m\right) \cdot \bar{Z}
\end{aligned}
$$

Suppose $n>1$ and we know (2) for $n-1$. Then

$$
\begin{aligned}
T q \cdot \bar{Z}^{n} & =\frac{T q \bar{Z}^{n-1}}{Z}=\frac{1}{Z}\left[T^{n} q+\left\{\sum_{j=1}^{n-1} \int T^{j} q d m \bar{Z}^{n-j}\right\}\right] \\
& =\frac{T^{n} q-\int T^{n} q d m}{Z}+\bar{Z}\left[\int T^{n} q d m+\left\{\sum_{j=1}^{n-1} \int T^{j} q d m \bar{Z}^{n-j}\right\}\right] \\
& =T^{n+1} q \oplus\left\{\sum_{j=1}^{n} \int T^{j} q d m \bar{Z}^{n-j+1}\right\}
\end{aligned}
$$

Thus (2) holds. This implies (1), completing the proof.
Remark. The first part of Collorary is suggested by Merrill [3] and the second part is the same of Theorem 4 in Douglas, Shapiro and Shields [2]. (See Ann. Inst. Fourier, 20, 37-76 (1970) for the proof.)

References

[1] A. Browder: Introduction to Function Algebras. Benjamin, New York (1969).
[2] R. G. Douglas, H. S. Shapiro, and A. L. Shields: On cyclic vectors of the backward shift. Bull. Amer. Math. Soc., 73, 156-159 (1967).
[3] S. Merrill: Maximality of Certain Algebras $H^{\infty}(d m)$. Math. Zeitschr., 106 262-266 (1968).

[^0]: *) (,) denotes the usual inner product in L^{2}.

