179. On Some Invariant Subspaces

By Yoshiki OHNO

The College of General Education, Tohoku University, Sendai

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

Let X be a compact Hausdorff space and let A be a function algebra on X. Throughout this paper, ϕ will be a fixed multiplicative linear functional on A which admits a unique representing measure m. Further we assume that the Gleason part of ϕ is non trivial. We denote by A_0 the maximal ideal associated with ϕ ; $A_0 = \{f \in A : \phi(f) = 0\}$. Let $H^2 = H^2(dm)$ be the closure $[A]_2$ of A in $L^2 = L^2(dm)$. We put $H_0^2 = \{f \in H^2; \int f dm = 0\}$. We shall refer to Browder [1] for the abstract function theory in this situation.

Let M be a closed subspace of H^2 . M is called simply invariant if $[A_0M]_2 \subset M$. We call M complementary invariant if $H^2 \ominus M$, the orthogonal complement of M in H^2 , is simply invariant. The purpose of this paper is a characterization of the complementary invariant subspace.

It is well known that L^2 admits the orthogonal decomposition $L^2 = H^2 \oplus \overline{H}_0^2$, where the bar denotes the complex conjugation. We denote by P the orthogonal projection of L^2 onto H^2 As Wermer has shown, there exists an inner function Z such that $H_0^2 = ZH^2$. (See [1] Lemma 4.4.3 for our situation.) We define the backward shift operator T on H^2 by

$$Tf = rac{f - \int f dm}{Z}$$
 $(f \in H^2).$

Theorem. The complementary invariant subspaces of H^2 are precisely the subspaces of the form

$$P[Tq \cdot \bar{H}^2],$$

where q is an inner function. q is determined by the subspace up to a constant factor.

Proof. Let M be a complementary invariant subspace of H^2 . Then $N = H^2 \ominus M$ is a simply invariant subspace of H^2 . Therefore, by the generalized Beurling theorem (for instance, see [1] Theorem 4.3.5), N has the form $N = qH^2$, where q is inner. For simplicity, we put h = Tq. Evidently $h \in L^{\infty} \cap H^2$. Since $\int Zdm = 0$ and q is inner, we have Some Invariant Subspaces

$$(h,qf) = \left(\frac{q - \int q dm}{Z}, qf\right) = (1,Zf) - \int q dm \cdot (1,Zqf) = 0^{*}$$

for every $f \in H^2$. Thus $h \perp qH^2 = N$. Hence $h \in M = H^2 \odot N$. We next show that $M \supset P[h \cdot \bar{H}^2]$. Let $f \in N$. Since N is A-invariant and $h \in M$, we have $(f, h\bar{g}) = (gf, h) = 0$ for all $g \in A$. Thus $(f, P(h\bar{g})) = (f, h\bar{g}) = 0$ for all $g \in H^2$. Hence $N \subset H^2 \odot P[h \cdot \bar{H}^2]$ and so $M \supset P[h \cdot \bar{H}^2]$. Let now $f \in M \odot P[h \cdot \bar{H}^2]$. Then, for all $g \in H^2$, we have

$$0 = (P(h\bar{g}), f) = (h\bar{g}, f) = (\bar{f}h, g)$$
$$= \left(\bar{f} - \frac{q - \int q dm}{Z}, g\right) = \left(\frac{q}{Z}\bar{f}, g\right) - \int q dm \cdot \int \overline{gfZ} dm = \left(\frac{q}{Z}\bar{f}, g\right).$$

Thus $\frac{q}{Z}\tilde{f}\perp H^2$, and $\frac{q}{Z}\tilde{f}\in \tilde{H}_0^2$, so $\frac{Z}{q}f\in H_0^2$. Therefore $f\in \frac{q}{Z}H_0^2=qH^2$ =N. But $f\in M\perp N$. Hence f=0 a.e., so $M=P[h\cdot \tilde{H}^2]$.

Conversely, suppose that $M = P[Tq \cdot \tilde{H}^2]$ for some inner function q. We show that M is complementary invariant. By the generalized Beurling theorem, it suffices to see that $H^2 \ominus M$ has the form $q \cdot H^2$. Clearly $qH^2 \subset H^2$. If $f \in H^2$, then

$$(qf, P(Tq \cdot ar{g})) = (qf, Tq \cdot ar{g}) = \left(qf, rac{q - \int qdm}{Z} ar{g}
ight) = (f, ar{Z}ar{g}) - \int ar{q}dm(qf, ar{Z}ar{g}) = 0 \quad (lash g \in H^2).$$

Hence $qH^2 \subset H^2 \odot M$. Next, suppose that $f \in \{H^2 \odot M\} \odot qH^2$. Since $f \perp M$, we have

$$0 = (f, P(Tq \cdot \bar{g})) = (f, Tq \cdot \bar{g}) = \left(f, \frac{q - \int q dm}{Z} \bar{g}\right)$$
$$= (f\bar{q}, \bar{Z}\bar{g}) - \int \bar{q} dm \cdot (f, \bar{Z}\bar{g}) = (f\bar{q}, \bar{Z}\bar{g}) \quad (\forall g \in H^2)$$

Thus $f\bar{q}\perp \bar{Z}\bar{H}^2 = \bar{H}_0^2$. But $f\bar{q}\perp H^2$ as $f\perp qH^2$. Hence $f\bar{q}\perp H^2 \oplus \bar{H}_0^2 = L^2$. Therefore $f\bar{q}=0$ a.e., hence f=0 a.e.. Thus $H^2 \ominus M = q \cdot H^2$.

Corollary. The following properties are equivalent.

(I) H^2 and the classical Hardy space $H^2(d\theta)$ are isometrically isomorphic to each other.

(II) For every non trivial closed subspace N of H^2 invariant under multiplication by functions in A, $M = H^2 \ominus N$ has the form $M = P[Ta \cdot \overline{H}^2]$

where q is an inner function.

Further, if these conditions hold, then every complementary in-

^{*) (,)} denotes the usual inner product in L^2 .

Y. Ohno

variant subspace M is the closed linear span of $\{T^n q\}_{n=1}^{\infty}$ for some inner function q.

Proof. (I) \Rightarrow (II). It is easy to see that the simple invariance and the *A*-invariance are equivalent in the classical case. The assertion follows from Theorem.

(II) \Rightarrow (I). Suppose that (I) fails. Then $N = \left\{ f \in H^2; \int f \cdot \bar{Z}^n dm = 0(\forall n) \right\}$ is non trivial and A-invariant. By the assumption, $H^2 \ominus N = P[Tq \cdot \bar{H}^2]$ for some inner function q. As in the proof of Theorem, we have $N = qH^2$. But this contradicts the fact that N is not simply invariant.

Now suppose that (I) or (II) holds. Then H^2 is the closed linear span of $\{Z^n\}_{n=0}^{\infty}$. It follows that M is the closed linear span of $\{P(Tq \cdot \bar{Z}^n)\}_{n=0}^{\infty}$. It suffices to see that for $n=0,1,2,\cdots$ (1) $P(Tq \cdot \bar{Z}^n) = T^{n+1}q$.

Clearly P(Tq) = Tq. By the induction on *n*, we show that for $n=1,2,\cdots$,

(2)
$$Tq\bar{Z}^n = T^{n+1}q \oplus \left\{\sum_{j=1}^n \int T^j q dm \bar{Z}^{n-j+1}\right\}.$$

We have

$$Tq\cdotar{Z}\!=\!rac{Tq\!-\!\!\int\!Tqdm}{Z}\!+\!\left(\!\int\!Tqdm
ight)\!\cdot\!ar{Z} = \!T^2q\!\oplus\!\left(\!\left(\!\int\!Tqdm
ight)\!\cdot\!ar{Z}.$$

Suppose n > 1 and we know (2) for n-1. Then

$$egin{aligned} Tq \cdot ar{Z}^n &= rac{Tqar{Z}^{n-1}}{Z} &= rac{1}{Z} \Big[T^n q + \Big\{ \sum\limits_{j=1}^{n-1} \int\! T^j q dm ar{Z}^{n-j} \Big\} \, \Big] \ &= rac{T^n q - \int\! T^n q dm}{Z} + ar{Z} \Big[\int\! T^n q dm + \Big\{ \sum\limits_{j=1}^{n-1} \int\! T^j q dm ar{Z}^{n-j} \Big\} \, \Big] \ &= T^{n+1} q \oplus \Big\{ \sum\limits_{j=1}^n \int\! T^j q dm ar{Z}^{n-j+1} \Big\} \, . \end{aligned}$$

Thus (2) holds. This implies (1), completing the proof.

Remark. The first part of Collorary is suggested by Merrill [3] and the second part is the same of Theorem 4 in Douglas, Shapiro and Shields [2]. (See Ann. Inst. Fourier, **20**, 37–76 (1970) for the proof.)

References

- [1] A. Browder: Introduction to Function Algebras. Benjamin, New York (1969).
- [2] R. G. Douglas, H. S. Shapiro, and A. L. Shields: On cyclic vectors of the backward shift. Bull. Amer. Math. Soc., 73, 156-159 (1967).
- [3] S. Merrill: Maximality of Certain Algebras $H^{\infty}(dm)$. Math. Zeitschr., 106 262–266 (1968).