205. On Potent Rings. III

By Hidetoshi MARUBAYASHI College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1970)

In [5], [6], we have mainly investigated potent irreducible rings. The purpose of this paper is to prove that a right locally uniform potent ring with zero right singular ideal is an essential irredundant subdirect sum *PI*-rings and conversely. A number of concepts and results are needed from [5] and [6].

By the same argument as in Theorem 2.2 of [2], we obtain the following

Proposition 1. Let R be a right locally uniform ring with $Z_r(R) = 0$, let I be a right ideal of R and let I* be a unique maximal essential extension of I in R. Then $I^* = \{a \in R \mid aE \subseteq I \text{ for some } E \subset 'R\}$.

Let R be a right locally uniform ring with $Z_r(R)=0$ and let \hat{R} be the maximal right quotient ring of R. Then the mappings

 $A{
ightarrow} E_R(A),\ A\in L^*_r(R)\ ;\ \hat{A}{
ightarrow} \hat{A}\cap R,\ \hat{A}\in L^*_r(\hat{R})$

are mutually inverse isomorphisms between $L_r^*(R)$ and $L_r^*(\hat{R})$, where $E_R(A)$ is a right *R*-injective hull of *A* (see [1]). Let *A* be an element of $L_r^*(R)$. Then we denote by \hat{A} the element of $L_r^*(\hat{R})$ which corresponds to *A*. Clearly \hat{A} is a right *R*-injective hull of *A* and is right \hat{R} -injective. Let *A* and *B* be uniform right ideals of *R*. As in [5], *A* and *B* are similar (in symbol; $A \sim B$) iff *A* and *B* contain mutually isomorphic nonzero right ideals A' and B', respectively. The set of all uniform right ideals of *R* can be classified by the equivalence relation $\sim \cdot \{A_i\}$ will denote the class containing the uniform right ideal A_i . We now set $R_i = (\sum_{A \in \{A_i\}} A)^*$. Then we obtain

Proposition 2. Let R be a right locally uniform ring with $Z_r(R) = 0$. Then the following properties hold:

- (1) $\sum_{A \in \{A_i\}} A$ is a two-sided ideal.
- (2) R_i is an ideal of R for each i.
- (3) If B is a uniform right ideal of R and if $B \subseteq R_i$, then $B \sim A_i$.
- (4) $\sum_i R_i$ is a direct sum.

Proof. Let A be a uniform right ideal and let x be an element of R. Then xA=0 or $xA\cong A$ and hence (1) follows immediately.

- (2) follows immediately from Proposition 1 and (1).
- (3) is obtained by the same argument as in Lemma 5.5 of [3].

(4) We can prove that \hat{R}_i is an \hat{R} -injective hull of the sum of all minimal right ideals of \hat{R} which are isomorphic to \hat{A}_i . Hence the

sum of \hat{R}_i is a direct sum and therefore $\sum_i R_i$ is a direct sum.

Proposition 3. If R is a right locally uniform ring with $Z_r(R) = 0$, then the followings hold:

- (1) \hat{R}_i is right self-injective, regular and prime as a ring.
- (2) \hat{R}_i is the maximal right quotient ring of R_i for each *i*.
- (3) $L_r^*(R_i) = \{I \in L_r^*(R) \mid I \subseteq R_i\}.$
- (4) If R is a potent ring, then R_i is a PI-ring.

Proof. (1) Since \hat{R}_i is an \hat{R} -injective hull of the sum of all minimal right ideals which are isomorphic to \hat{A}_i , \hat{R}_i is an ideal of \hat{R} and is a direct summand of \hat{R} . From these (1) follows immediately.

(2) Since \hat{R}_i is a regular ring and is a right self-injective ring by (1), it is enough to prove that $\hat{R}_i \supset R_i$ as right R_i -modules. Let q be a nonzero element of \hat{R}_i . Then there exists $r \in R$ such that $0 \neq qr \in R \cap \hat{R}_i$ $= R_i$. Since $R_i R_j = 0$ $(i \neq j)$, $\sum_i R_i \subset 'R$ and $Z_r(R) = 0$, we obtain $qrR_i \neq 0$. Hence there exists $r' \in R_i$ such that $0 \neq (qr)r' = q(rr') \in R_i$ and $rr' \in R_i$, as desired.

(3) Let I be a closed right ideal of R such that $I \subseteq R_i$. Then \hat{I} is a direct summand of \hat{R}_i and $I = \hat{I} \cap R = (\hat{I} \cap \hat{R}_i) \cap R = \hat{I} \cap (\hat{R}_i \cap R) = \hat{I} \cap R_i$. Hence we have $I \in L_r^*(R_i)$. Conversely, let I be a closed right ideal of R_i and let $\bar{I} = E_{R_i}(I)$. Then \bar{I} is a right ideal of \hat{R} and is a direct summand of \hat{R} . Since $\bar{I} \cap R = (\bar{I} \cap \hat{R}_i) \cap R = \bar{I} \cap (\hat{R}_i \cap R) = \bar{I} \cap R_i = I$, we obtain $I \in L_r^*(R)$ and $I \subseteq R_i$, as desired.

(4) follows from (1) and (3).

We shall call R_i an irreducible component of R.

Let R be a right locally uniform potent ring with $Z_{\tau}(R) = 0$. Then R is said to be locally residue-finite iff the irreducible components R_i of R are residue-finite as a ring. By Proposition 3, if R is a right locally uniform potent ring with $Z_{\tau}(R) = 0$ and if R is locally residuefinite, then R_i is a residue-finite PI-ring for each *i*. Now we set $P_i = (\sum_{j \neq i} R_j)^*$ and $\bar{R}_i = R/P_i$ for each *i*. Then the followings hold:

- (i) $\bigcap_i P_i = 0.$
- (ii) $\bigcap_{j\neq i} P_j \neq 0.$

(iii) $\bar{R}_i \supset R_i$ as a right R_i -module for each *i*.

(iv) If R_i is a residue-finite *PI*-ring, then so is \bar{R}_i .

Let R be a subdirect sum of a family R_i of rings (that is $R \subset \prod_i R_i$ and the projection $R \to R_i$ is onto for each *i*). The subdirect sum will be called essential irredundant iff $\prod_i R_i \supset \sum_i \bigoplus (R \cap R_i)$ as a right Rmodule (see [1]).

Now, we can summarize the above-mentioned results as follows:

Theorem 1. Let R be a right locally uniform potent ring with $Z_r(R)=0$ and $\{\bar{R}_i\}$ be as above. Then R is an essential irredundant subdirect sum of $\{\bar{R}_i\}$, where \bar{R}_i is a PI-ring for each i. Furthermore if R is locally residue-finite, then \bar{R}_i is a residue-finite PI-ring.

We now give a converse of Theorem 1.

Theorem 2. Let $\{\bar{R}_i\}$ be a family of PI-rings and let R be an essential irredundant subdirect sum of $\{\bar{R}_i\}$. Then

- (1) R is a right locally uniform potent ring with $Z_r(R) = 0$.
- (2) If \overline{R}_i is residue-finite for each *i*, then *R* is locally residue-finite.

Proof. We first prove that R is a right locally uniform ring with $Z_r(R)=0$. Let \hat{R}_i be the maximal right quotient ring of \bar{R}_i for each i. Then \hat{R}_i is a full left linear ring over a division ring. We set $S = \prod_i \bar{R}_i$. Then, by ([4; p. 72, Proposition]), $\hat{S} = \prod_i \hat{R}_i$ is the maximal right quotient ring of S. By ([1, p. 117, Theorem 3.9]), \hat{S} is right selfinjective, right locally uniform and regular as a ring. Since, by the assumption, $S \supset \sum_i \bigoplus (\bar{R}_i \cap R)$ as a right R-module, \hat{S} is the maximal right quotient ring of R and hence R is a right locally uniform ring with $Z_r(R)=0$. Let I be a closed right ideal of R and let $I_i=\{x_i \in \bar{R}_i \mid a = (x_i) \in I$ for some $a \in I\}$. Then we can prove that I_i is a closed right ideal of \bar{R}_i . Then the following properties hold.

- (1) $R_i \in L^*_{r^2}(R)$ and \bar{R}_i is a right quotient ring of R_i for each *i*.
- (2) $\{R_i\}$ are the irreducible components of R.

Hence, by Proposition 3, we obtain $L_r^*(R_i) = \{I \in L_r^*(R) | I \subseteq R_i\}$. Furthermore, we can prove that $\overline{T} = \widehat{T} \cap \overline{R}_i$ is a closed ideal of R_i for each $T \in L_{r_2}^*(R_i)$. Since $L_r^*(R_i) \cong L_r^*(\overline{R}_i)$, R_i is residue-finite if \overline{R}_i is residue-finite. Hence if \overline{R}_i is residue-finite for each *i*, then *R* is locally residue-finite.

References

- C. Faith: Lectures on Injective Modules and Quotient Rings. Springer-Verlag, New York (1967).
- [2] A. W. Goldie: Semi-prime rings with maximum condition. Proc. Lond. Math. Soc., 10, 201-220 (1960).
- [3] ----: Torsion-free modules and rings. J. Algebra, 1, 268-287 (1964).
- [4] L. Levy: Unique direct sums of prime rings. Trans. Amer. Math Soc., 106, 64-76 (1963).
- [5] H. Marubayashi: On potent rings. I. Proc. Japan Acad., 46, 893-896 (1970).
- [6] ----: On potent rings. II. Proc. Japan Acad., 46 897-900 (1970).