190. A Note on Ribbon 2-Knots

By Akio Omae

Department of Mathematics, Köbe University

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. We shall consider the 2-spheres in a 4-sphere that are locally flat, which will be called 2-*knots*. S. Kinoshita [2] showed that for each polynomial f(t) with $f(1) = \pm 1$, there exists a 2-sphere in a 4-sphere whose Alexander polynomial is defined and equal to f(t). Recently, by an another method, D. W. Sumners [4] [5] showed that the existence of the 2-knot K^2 such that i) the Alexander polynomial of K^2 is f(t) above, and moreover, ii) the second homotopy group of the complement of K^2 has the " Γ -torsion".

It is easy to see that the 2-knots which S. Kinoshita constructed in [2] are ribbon 2-knots [6] [7]. He gave us the following question.

"Is every Sumners's 2-knot a ribbon 2-knot?"

In this paper we will give the affirmative answer of this question. We will consider everything from the combinatorial standpoint of view. By S^n , \mathring{X} , ∂X and N(X, Y), we shall denote an *n*-sphere, the interior of X, the boundary of X and the regular neighborhood of X in Y, respectively. $X \simeq Y$ means that X is homeomorphic to Y, and $\#^m X$ the connected sum of the *m* copies of X.

2. We will give some knowledge of ribbon and Sumners's 2-knots [5] [7].

Definition 2.1. A locally flat 2-sphere K^2 in S^4 will be called a *ribbon* 2-knot, if there is a ribbon map ρ of a 3-ball B^3 into S^4 satisfying the following conditions

(1) $\rho \mid \partial B^3$ is an embedding and $\rho(\partial B^3) = K^2$,

(2) the self-intersections of B^3 by ρ consists of mutually disjoint 2-balls D_1^2, \dots, D_s^2 ,

(3) the inverse set $\rho^{-1}(D_i^2)$ consists of disjoint 2-balls $D_i'^2$ and $D_i''^2$ such that $D_i'^2 \subset \mathring{B}^3$ and $\partial D_i''^2 = D_i''^2 \cap \partial B^3$ $(i=1, \dots, s)$.

Let N_i^3 be a spherical-shell, which is homeomorphic to $S^2 \times [0, 1]$ $(i=1, \dots, m)$. A system of spherical-shells $N_1^3 \cup \dots \cup N_m^3$ will be called *trivial* if they are mutually disjoint and such that

i) the 2-link $\partial N_1^3 \cup \cdots \cup \partial N_m^3$ of 2m components is of trivial type in $S^4 - (\mathring{N}_1^3 \cup \cdots \cup \mathring{N}_m^3)$; that is, there are mutually disjoint 3-balls B_1^3 , \cdots, B_{2m}^3 in $S^4 - (\mathring{N}_1^3 \cup \cdots \cup \mathring{N}_m^3)$ such that $\partial N_i^3 = \partial B_i^3 \cup \partial B_{m+i}^3$ $(i=1, \cdots, m)$,

ii) for each *i* the 3-sphere $B_i^3 \cup N_i^3 \cup B_{m+i}^3$ bounds a 4-ball B_i^4 in S^4 such that $B_i^4 \cap B_j^4 = \emptyset$ $(i \neq j)$.

Let W^3 be a 3-manifold in S^4 which is homeomorphic to $\#(S^1 \times S^2) - \mathring{J}^3$, where \varDelta^3 is a 3-simplex. We will call W^3 in S^4 semi-unknotted if on it there is a trivial system of spherical-shells $N_1^3 \cup \cdots \cup N_m^3$ which is such that $W^3 - (\mathring{N}_1^3 \cup \cdots \cup \mathring{N}_m^3)$ is homeomorphic to the closure of a 3-sphere removed of mutually disjoint 2m+1 3-balls [1]. From the theorem (3.6) in [7] we have

Lemma 2.2. A 2-knot K^2 is a ribbon 2-knot, if and only if K^2 bounds a semi-unknotted 3-manifold W^3 in S^4 .

Construction of Sumners's 2-knot.

Let B^3 be a 3-ball in the boundary 4-sphere S^4 of a 5-ball B^5 . Let $f: S^0 \rightarrow S^4 - B^3$ be an embedding, and attach a 1-handle h^1 to B^5 by f to obtain the manifold $T = B^5 \cup_f h^1$. Let $S^2_0 = \partial B^3$. Let α denote the generator of $\pi_1(\partial T - S^2_0)$ which goes around the handle and β the generator which links once S^2_0 in ∂T . Let $g: S^1 \rightarrow \partial T - S^2_0$ be the embedding in the homotopy class of $\alpha^{a_0}\beta\alpha^{a_1}\beta\cdots\beta\alpha^{a_m}\beta^{-m}\in\pi_1(\partial T - S^2_0)$ such that $a_0 + \cdots + a_m = \pm 1$. Attaching a 2-handle h^2 to T by g, we obtain the manifold $T \cup_g h^2 = (B^5 \cup_f h^1) \cup_g h^2 = \tilde{B}^5$ that is homeomorphic to a 5-ball from the handle cancellation theorem [3]. It is easy to see that S^2_0 is a 2-knot in the 4-sphere $\tilde{S}^4 = \partial \tilde{B}^5$.

3. In this section, we will prove the following

Theorem 3.1. Every Sumners's 2-knot is a ribbon 2-knot.

Proof. It is sufficient to show that Sumners's 2-knot given in section 2 is a ribbon 2-knot.

The 3-ball B^3 and the attaching sphere $g(S^1)$ of 2-handle h^2 intersect at 2m points; say $x_1, \dots, x_m, x_{-m}, \dots, x_{-1}$ whose order is according to the orientation of $g(S^1)$. Let $x_{-i}x_i$ be a subarc of $g(S^1)$ from x_{-i} to x_i in accordance with the orientation of $g(S^1)(i=1, \dots, m)$. We may assume that $N(x_{-1}x_1, \partial T)$ and the 3-ball B^3 intersect at 3-balls D^3_{-1} and D_1^3 whose centers are x_{-1} and x_1 respectively. Then D_{-1}^3 and D_1^3 divide $\partial N(x_{-1}x_1, \partial T)$ into two 3-balls and a spherical-shell \tilde{N}_1^3 which is homeomorphic to $S^2 \times [0, 1]$. Let $W_1^3 = \{B^3 - (D_{-1}^3 \cup D_1^3)\} \cup \tilde{N}_1^3$, then W_1^3 $\simeq S^1 \times S^2 - \dot{A^3}, \quad W_1^3 \cap g(S^1) = x_2 \cup \cdots \cup x_m \cup x_{-m} \cup \cdots \cup x_{-2} \text{ and } \partial W_1^3 = \partial B^3$ = S_0^2 . We can take a subdivision T_2 such that $N(x_{-2}x_2, \partial T_2)$ and W_1^3 intersect at 3-balls D_{-2}^3 and D_2^3 whose centers are x_{-2} and x_2 respectively. D_{-2}^3 and D_2^3 divide $\partial N(x_{-2}x_2, \partial T_2)$ into two 3-balls and a spherical-shell \tilde{N}_2^3 . Let $W_2^3 = \{W_1^3 - (D_{-2}^3 \cup D_2^3)\} \cup \tilde{N}_2^3$, then $W_2^3 \simeq \#(S^1 \times S^2) - \mathring{d}^3$, $W_2^3 \cap g(S^1)$ $=x_3\cup\cdots\cup x_m\cup x_{-m}\cup\cdots\cup x_{-3}$ and $\partial W_2^3=\partial W_1^3=S_0^2$. Repeating of this procedure, we obtain the 3-manifold $W_m^3 = W^3$ such that $W^3 \simeq \#(S^1 \times S^2)$ $-\mathring{A}^3$, $W^3 \cap g(S^1) = \emptyset$ and $\partial W^3 = S_0^2$, see Fig. 1.

It is easily seen that W^3 is in \tilde{S}^4 . In fact, let T_{m+1} be a subdivision of T_m , then $N(g(S^1), \partial T_{m+1})$ is considered to be an attaching tube of

Suppl.]

Fig. 1

2-handle h^2 , and $W^3 = W_m^3$ is in $\partial T - N(g(S^1), \partial T_{m+1})$, which is a subset of \tilde{S}^4 .

We will show that W^3 is a semi-unknotted 3-manifold.

Let x_{m+i} be a point on the interior of $x_{i-1}x_i$ which is a subarc of $g(S^1)$ from x_{i-1} to x_i $(i=1, \dots, m)$ where x_0 means x_{-1} . Then there is a 3-ball D^3_{m+i} such that $x_{m+i} \in \mathring{D}^3_{m+i} \subset \mathring{N}(x_{-i}x_i, \partial T)$, $\partial D^3_{m+i} \subset \widetilde{N}^3_i$ and ∂D^3_{m+i} divides \widetilde{N}^3_i into two spherical-shells. Let N^3_i $(i=1, \dots, m)$ be the one of the two spherical-shells with the boundary $\partial D^3_i \cup \partial D^3_{m+i}$. Let S^2_i and S^2_{m+i} be the 2-spheres ∂D^3_i and ∂D^3_{m+i} , respectively. Then the system of spherical-shells $N^3_1 \cup \cdots \cup N^3_m$ will be trivial.

Since $g(S^1)$ is ambient isotopic to α in $\partial T = \alpha \times S^3$, it is considered that $\partial T = g(S^1) \times S^3$ and D_i^3 is in $x_i \times S^3$ $(i=1, \dots, 2m)$. Since $N(g(S^1),$ $\partial T_{m+1}) \cap (x_i \times S^3) = x_i \times 3$ -ball, S_i^2 bounds a 3-ball $B_i^3 = x_i \times S^3 - D_i^3$ in $x_i \times S^3 - (N(g(S^1), \partial T_{m+1}) \cap (x_i \times S^3)) - (\mathring{N}_1^3 \cup \dots \cup \mathring{N}_m^3) \subset \tilde{S}^4 - (\mathring{N}_1^3 \cup \dots \cup \mathring{N}_m^3)$, see Fig. 2. Therefore $\partial N_1^3 \cup \dots \cup \partial N_m^3 = S_1^2 \cup \dots \cup S_{2m}^2$ is a trivial link in $\tilde{S}^4 - (\mathring{N}_1^3 \cup \dots \cup \mathring{N}_m^3)$. From the construction of N_i^3 and B_j^3 , we can easily see that each $B_i^3 \cup N_i^3 \cup B_{m+i}^3$ bounds the 4-ball $B_i^4 = B_i^3 \times x_i x_{m+i}$ in $\partial T - N(g(S^1), \partial T_{m+1}) \subset \tilde{S}^4$ and B_1^4, \dots, B_m^4 are mutually disjoint. Hence the system of spherical-shells $N_1^3 \cup \dots \cup N_m^3$ is trivial.

It is easy to see that $W^3 - (\mathring{N}_1^3 \cup \cdots \cup \mathring{N}_m^3)$ is homeomorphic to the closure of a 3-sphere removed of mutually disjoint 2m+1 3-balls. Hence W^3 is a semi-unknotted 3-manifold.

Fig. 2

Therefore, from Lemma 2.2, S_0^2 is a ribbon 2-knot. This completes the proof of Theorem 3.1.

References

- R. H. Fox and H. F. Trotter: Characterization of slices and ribbons. Osaka J. Math. (to appear).
- [2] S. Kinoshita: On the Alexander polynomials of 2-spheres in a 4-sphere. Ann. of Math., 74, 518-531 (1961).
- [3] J. R. Stallings: Lectures on Polyhedral Topology. Tata Inst. of Fund. Res., Bombay (1967).
- [4] D. W. Sumners: Higher-dimensional slice knots. Bull. Amer. Math. Soc., 72, 894-897 (1966).
- [5] —: Homotopy torsion in codimension two knots. Proc. Amer. Math. Soc., 24, 229-240 (1970).
- [6] T. Yajima: On simply knotted spheres in \mathbb{R}^4 . Osaka J. Math., 1, 133-152 (1964).
- [7] T. Yanagawa: On ribbon 2-knots. Osaka J. Math., 6, 447-464 (1969).