190. A Note on Ribbon 2-Knots

By Akio Ōmae
Department of Mathematics, Kōbe University
(Comm. by Kinjirô Kunugı, m. J. A., May 12, 1971)

1. We shall consider the 2 -spheres in a 4 -sphere that are locally flat, which will be called 2-knots. S. Kinoshita [2] showed that for each polynomial $f(t)$ with $f(1)= \pm 1$, there exists a 2 -sphere in a 4 -sphere whose Alexander polynomial is defined and equal to $f(t)$. Recently, by an another method, D. W. Sumners [4] [5] showed that the existence of the 2 -knot K^{2} such that i) the Alexander polynomial of K^{2} is $f(t)$ above, and moreover, ii) the second homotopy group of the complement of K^{2} has the " Γ-torsion".

It is easy to see that the 2 -knots which S . Kinoshita constructed in [2] are ribbon 2-knots [6] [7]. He gave us the following question.
"Is every Sumners's 2-knot a ribbon 2-knot?"
In this paper we will give the affirmative answer of this question. We will consider everything from the combinatorial standpoint of view. By $S^{n}, \dot{X}, \partial X$ and $N(X, Y)$, we shall denote an n-sphere, the interior of X, the boundary of X and the regular neighborhood of X in Y, respectively. $X \simeq Y$ means that X is homeomorphic to Y, and $\# X$ the connected sum of the m copies of X.
2. We will give some knowledge of ribbon and Sumners's 2 -knots [5] [7].

Definition 2.1. A locally flat 2 -sphere K^{2} in S^{4} will be called a ribbon 2 -knot, if there is a ribbon map ρ of a 3 -ball B^{3} into S^{4} satisfying the following conditions
(1) $\rho \mid \partial B^{3}$ is an embedding and $\rho\left(\partial B^{3}\right)=K^{2}$,
(2) the self-intersections of B^{3} by ρ consists of mutually disjoint 2-balls $D_{1}^{2}, \cdots, D_{s}^{2}$,
(3) the inverse set $\rho^{-1}\left(D_{i}^{2}\right)$ consists of disjoint 2-balls $D_{i}^{\prime 2}$ and $D_{i}^{\prime / 2}$ such that $D_{i}^{\prime 2} \subset \stackrel{\circ}{B}^{3}$ and $\partial D_{i}^{\prime \prime 2}=D_{i}^{\prime \prime 2} \cap \partial B^{3}(i=1, \cdots, s)$.

Let N_{i}^{3} be a spherical-shell, which is homeomorphic to $S^{2} \times[0,1]$ $(i=1, \cdots, m)$. A system of spherical-shells $N_{1}^{3} \cup \cdots \cup N_{m}^{3}$ will be called trivial if they are mutually disjoint and such that
i) the 2-link $\partial N_{1}^{3} \cup \cdots \cup \partial N_{m}^{3}$ of $2 m$ components is of trivial type in $S^{4}-\left(\dot{N}_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$; that is, there are mutually disjoint 3 -balls B_{1}^{3}, $\cdots, B_{2 m}^{3}$ in $S^{4}-\left(\dot{N}_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$ such that $\partial N_{i}^{3}=\partial B_{i}^{3} \cup \partial B_{m+i}^{3}(i=1, \cdots, m)$,
ii) for each i the 3 -sphere $B_{i}^{3} \cup N_{i}^{3} \cup B_{m+i}^{3}$ bounds a 4 -ball B_{i}^{4} in S^{4} such that $B_{i}^{4} \cap B_{j}^{4}=\emptyset(i \neq j)$.

Let W^{3} be a 3-manifold in S^{4} which is homeomorphic to $\stackrel{m}{\#}\left(S^{1} \times S^{2}\right)-\Delta^{3}$, where Δ^{3} is a 3 -simplex. We will call W^{3} in S^{4} semi-unknotted if on it there is a trivial system of spherical-shells $N_{1}^{3} \cup \cdots \cup N_{m}^{3}$ which is such that $W^{3}-\left(\dot{N}_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$ is homeomorphic to the closure of a 3 -sphere removed of mutually disjoint $2 m+13$-balls [1]. From the theorem (3.6) in [7] we have

Lemma 2.2. A 2-knot K^{2} is a ribbon 2 -knot, if and only if K^{2} bounds a semi-unknotted 3-manifold W^{3} in S^{4}.

Construction of Sumners's 2-knot.
Let B^{3} be a 3 -ball in the boundary 4 -sphere S^{4} of a 5 -ball B^{5}. Let $f: S^{0} \rightarrow S^{4}-B^{3}$ be an embedding, and attach a 1-handle h^{1} to B^{5} by f to obtain the manifold $T=B^{5} \cup_{f} h^{1}$. Let $S_{0}^{2}=\partial B^{3}$. Let α denote the generator of $\pi_{1}\left(\partial T-S_{0}^{2}\right)$ which goes around the handle and β the generator which links once S_{0}^{2} in ∂T. Let $g: S^{1} \rightarrow \partial T-S_{0}^{2}$ be the embedding in the homotopy class of $\alpha^{a_{0}} \beta \alpha^{a_{1}} \beta \cdots \beta \alpha^{a_{m}} \beta^{-m} \in \pi_{1}\left(\partial T-S_{0}^{2}\right)$ such that $a_{0}+\cdots$ $+\alpha_{m}= \pm 1$. Attaching a 2 -handle h^{2} to T by g, we obtain the manifold $T \cup_{g} h^{2}=\left(B^{5} \cup_{f} h^{1}\right) \cup_{g} h^{2}=\tilde{B}^{5}$ that is homeomorphic to a 5-ball from the handle cancellation theorem [3]. It is easy to see that S_{0}^{2} is a 2 -knot in the 4 -sphere $\widetilde{S}^{4}=\partial \tilde{B}^{5}$.
3. In this section, we will prove the following

Theorem 3.1. Every Sumners's 2-knot is a ribbon 2-knot.
Proof. It is sufficient to show that Sumners's 2-knot given in section 2 is a ribbon 2-knot.

The 3 -ball B^{3} and the attaching sphere $g\left(S^{1}\right)$ of 2-handle h^{2} intersect at $2 m$ points ; say $x_{1}, \cdots, x_{m}, x_{-m}, \cdots, x_{-1}$ whose order is according to the orientation of $g\left(S^{1}\right)$. Let $x_{-i} x_{i}$ be a subarc of $g\left(S^{1}\right)$ from x_{-i} to x_{i} in accordance with the orientation of $g\left(S^{1}\right)(i=1, \cdots, m)$. We may assume that $N\left(x_{-1} x_{1}, \partial T\right)$ and the 3 -ball B^{3} intersect at 3 -balls D_{-1}^{3} and D_{1}^{3} whose centers are x_{-1} and x_{1} respectively. Then D_{-1}^{3} and D_{1}^{3} divide $\partial N\left(x_{-1} x_{1}, \partial T\right)$ into two 3-balls and a spherical-shell \tilde{N}_{1}^{3} which is homeomorphic to $S^{2} \times[0,1]$. Let $W_{1}^{3}=\left\{B^{3}-\left(D_{-1}^{3} \cup D_{1}^{3}\right)\right\} \cup \tilde{N}_{1}^{3}$, then W_{1}^{3} $\simeq S^{1} \times S^{2}-J^{3}, \quad W_{1}^{3} \cap g\left(S^{1}\right)=x_{2} \cup \cdots \cup x_{m} \cup x_{-m} \cup \cdots \cup x_{-2}$ and $\partial W_{1}^{3}=\partial B^{3}$ $=S_{0}^{2}$. We can take a subdivision T_{2} such that $N\left(x_{-2} x_{2}, \partial T_{2}\right)$ and W_{1}^{3} intersect at 3 -balls D_{-2}^{3} and D_{2}^{3} whose centers are x_{-2} and x_{2} respectively. D_{-2}^{3} and D_{2}^{3} divide $\partial N\left(x_{-2} x_{2}, \partial T_{2}\right)$ into two 3 -balls and a spherical-shell \tilde{N}_{2}^{3}. Let $W_{2}^{3}=\left\{W_{1}^{3}-\left(D_{-2}^{3} \cup D_{2}^{3}\right)\right\} \cup \tilde{N}_{2}^{3}$, then $W_{2}^{3} \simeq \#\left(S^{1} \times S^{2}\right)-0^{3}, W_{2}^{3} \cap g\left(S^{1}\right)$ $=x_{3} \cup \cdots \cup x_{m} \cup x_{-m} \cup \cdots \cup x_{-3}$ and $\partial W_{2}^{3}=\partial W_{1}^{3}=S_{0}^{2}$. Repeating of this procedure, we obtain the 3-manifold $W_{m}^{3}=W^{3}$ such that $W^{3} \simeq \#\left(S^{1} \times S^{2}\right)$ $-\grave{\Delta}^{3}, W^{3} \cap g\left(S^{1}\right)=\emptyset$ and $\partial W^{3}=S_{0}^{2}$, see Fig. 1.

It is easily seen that W^{3} is in \tilde{S}^{4}. In fact, let T_{m+1} be a subdivision of T_{m}, then $N\left(g\left(S^{1}\right), \partial T_{m+1}\right)$ is considered to be an attaching tube of

Fig. 1
2-handle h^{2}, and $W^{3}=W_{m}^{3}$ is in $\partial T-N\left(g\left(S^{1}\right), \partial T_{m+1}\right)$, which is a subset of \tilde{S}^{4}.

We will show that W^{3} is a semi-unknotted 3 -manifold.
Let x_{m+i} be a point on the interior of $x_{i-1} x_{i}$ which is a subarc of $g\left(S^{1}\right)$ from x_{i-1} to $x_{i}(i=1, \cdots, m)$ where x_{0} means x_{-1}. Then there is a 3-ball D_{m+i}^{3} such that $x_{m+i} \in \dot{D}_{m+i}^{3} \subset \stackrel{N}{N}\left(x_{-i} x_{i}, \partial T\right), \partial D_{m+i}^{3} \subset \tilde{N}_{i}^{3}$ and ∂D_{m+i}^{3} divides \tilde{N}_{i}^{3} into two spherical-shells. Let $N_{i}^{3}(i=1, \cdots, m)$ be the one of the two spherical-shells with the boundary $\partial D_{i}^{3} \cup \partial D_{m+i}^{3}$. Let S_{i}^{2} and S_{m+i}^{2} be the 2 -spheres ∂D_{i}^{3} and ∂D_{m+i}^{3}, respectively. Then the system of spherical-shells $N_{1}^{3} \cup \cdots \cup N_{m}^{3}$ will be trivial.

Since $g\left(S^{1}\right)$ is ambient isotopic to α in $\partial T=\alpha \times S^{3}$, it is considered that $\partial T=g\left(S^{1}\right) \times S^{3}$ and D_{i}^{3} is in $x_{i} \times S^{3}(i=1, \cdots, 2 m)$. Since $N\left(g\left(S^{1}\right)\right.$, $\left.\partial T_{m+1}\right) \cap\left(x_{i} \times S^{3}\right)=x_{i} \times 3$-ball, S_{i}^{2} bounds a 3 -ball $B_{i}^{3}=x_{i} \times S^{3}-\check{D}_{i}^{3}$ in $x_{i} \times S^{3}-\left(N\left(g\left(S^{1}\right), \partial T_{m+1}\right) \cap\left(x_{i} \times S^{3}\right)\right)-\left(ْ_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right) \subset \tilde{S}^{4}-\left(\dot{N}_{1}^{3} \cup \cdots\right.$ $\cup \dot{N}_{m}^{3}$), see Fig. 2. Therefore $\partial N_{1}^{3} \cup \cdots \cup \partial N_{m}^{3}=S_{1}^{2} \cup \cdots \cup S_{2 m}^{2}$ is a trivial link in $\tilde{S}^{4}-\left(\stackrel{N}{1}_{3}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$. From the construction of N_{i}^{3} and B_{j}^{3}, we can easily see that each $B_{i}^{3} \cup N_{i}^{3} \cup B_{m+i}^{3}$ bounds the 4 -ball $B_{i}^{4}=B_{i}^{3}$ $\times x_{i} x_{m+i}$ in $\partial T-N\left(g\left(S^{1}\right), \partial T_{m+1}\right) \subset \tilde{S}^{4}$ and $B_{1}^{4}, \cdots, B_{m}^{4}$ are mutually disjoint. Hence the system of spherical-shells $N_{1}^{3} \cup \cdots \cup N_{m}^{3}$ is trivial.

It is easy to see that $W^{3}-\left(\dot{N}_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$ is homeomorphic to the closure of a 3 -sphere removed of mutually disjoint $2 m+13$-balls. Hence W^{3} is a semi-unknotted 3 -manifold.

Fig. 2
Therefore, from Lemma 2.2, S_{0}^{2} is a ribbon 2-knot. This completes the proof of Theorem 3.1.

References

[1] R. H. Fox and H. F. Trotter: Characterization of slices and ribbons. Osaka J. Math. (to appear).
[2] S. Kinoshita: On the Alexander polynomials of 2 -spheres in a 4 -sphere. Ann. of Math., 74, 518-531 (1961).
[3] J. R. Stallings: Lectures on Polyhedral Topology. Tata Inst. of Fund. Res., Bombay (1967).
[4] D. W. Sumners: Higher-dimensional slice knots. Bull. Amer. Math. Soc., 72, 894-897 (1966) .
[5] --: Homotopy torsion in codimension two knots. Proc. Amer. Math. Soc., 24, 229-240 (1970).
[6] T. Yajima: On simply knotted spheres in R^{4}. Osaka J. Math., 1, 133-152 (1964).
[7] T. Yanagawa: On ribbon 2-knots. Osaka J. Math., 6, 447-464 (1969).

