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187. On the Bi.ideals in Semigroups. II

By Sndor LAJOS
K. Marx University of Economics, Budapest, Hungary

(Comm. by Kinjir6 KUNUGI, M. J..., May 12, 1971)

This note is a continuation of a recent paper of the author [8].
In this series some important results about bi-ideals o semigroups are
summarized and some new results are announced. We adopt the
standard notation and terminology due to A. H. Clifford and G. B.
Preston [3].

Theorem 1. Let S be a semigroup. Suppose that B is a bi-ideal,
T is a subsemigroup of S, and the intersection A--B T is not empty.
Then A is a bi-ideal of T.

This is a consequence of a theorem concerning (m, n)-ideals (cf. the
author [7], Theorem 1).

The following result shows that the existence o proper bi-ideal (in
some cases) implies that of proper left (and right) ideal.

Theorem 2. Suppose that A is a proper bi-ideal of a semigroup
S, not being a left (right) ideal of S. Then the product BS (SB) is a
proper right (left) ideal of S.

The author proved the following statement [6].
Theorem 3. Let S be a regular semigroup. Then every bi-ideal

of S is a quasi-ideal, and conversely.
K. M. Kapp [5] proved the ollowing two results.
Theorem 4. If S is a left simple semigroup, then every bi-ideal

B of S is a right ideal.
Theorem 5. Let S be a semigroup with zero. If S is left O-

simple, then the sets of bi-ideals and quasi-ideals of S coincide.
The ollowing example shows that there exists such a bi-ideal

which is not quasi-ideal.

Example 1o Let S be the semigroup o four elements 0, 1, 2, 3
with multiplication table

0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 2

It is easy to see that the subsemigroup B= {0, 2} is a bi-ideal of S
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which is not a quasi-ideal o S. Actually B is a two-sided ideal of the
two-sided ideal I= (0, 1, 2} of S, i.e. B is a 2-ideal of S (see the author
[6]).

Utilizing Theorem 3, J. D4nes [4] proved the following result.
Theorem 6. In the symmetric semigroup Fn of transformations

of a set of n elements every hi-ideal is a left ideal.
A generalization of this assertion reads as ollows.
Theorem 7. Let S be a regular right duo semigroup. Then every

bi-ideal B of S is a left ideal.
A semigroup S is called right duo if every right ideal R of S is

two-sided.
Example 2. The semigroup S of the four elements 0, 1, 2, 3 with

the multiplication table

0 1 2 3

0 0 0 0

0 1 2 3

0 1 2 3

0 1 2 3

is a regular right duo semigroup.
erty:

It is easy to see that S has the prop-

(P) Every non-empty subset of S is a subsemigroup.
Thus, by a theorem of L. Rdei ([10], Theorem 50), S is a chain of right
zero semigroups.

Theorem 8. Let S be a regular right duo semigroup, and let A be
a non-empty subset of S. Then A is an (m, n)-ideal of S if and only if
it is a (0, n)-ideal of S.

The following result is a consequence of Theorem 8.
Theorem 9. A non-empty subset T of the symmetric semigroup

F is a (p, q)-ideal of F if and only if T is a (0, q)-ideal of Fn (P, q are
arbitrary non-negative integers).

The next result is a criterion or a right duo semigroup to be a
semilattice o groups.

Theorem 10. A right duo semigroup S is a semilattice of groups

if and only if the condition
(1) BI=BI

holds for every bi-ideal B and every two-sided ideal I of S.
The ollowing two theorems characterize the class of semigroups

that are semilattices of groups in terms of bi-ideals.
Theorem 11. A semigroup S is a semilattice of groups if and

only if the intersection of any two bi-ideals of S is equal to their prod-
uct.
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Theorem 12. A semigroup S is a semilattice of groups if and
only if the set of hi-ideals of S is a semilattice under the multiplication

of subsets.
Next the class of regular semigroups will be characterized in terms

of bi-ideals.
Theorem 1 3. A semigroup S is regular if and only if the relation
( 2 BSB--B

holds for each bi-ideal B of S.
The ollowing two results are due to J. Calais [1] [2].
Theorem 1 4. A semigroup S is regular if and only if each left

ideal and each right ideal of S is globally idempotent, and he product
RL is a quasi-ideal of S for every left ideal L and every right ideal R
of S.

Theorem 15. For a semigroup S the sets of bi-ideals and quasi-
ideals coincide if and only if B(x, y)=Q(x, y) for every couple , y in S.

B(x, y) and Q(x, y) denote the smallest bi-ideal and quasi-ideal of S
containing the elements x, y o S.
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This result remains true with quasi-ideal instead of bi-ide.al (cf. Luh [9]).


