187. On the Bi-ideals in Semigroups. II

By Sándor Lajos
K. Marx University of Economics, Budapest, Hungary

(Comm. by Kinjirô Kunugi, M. J. A., May 12, 1971)

This note is a continuation of a recent paper of the author [8]. In this series some important results about bi-ideals of semigroups are summarized and some new results are announced. We adopt the standard notation and terminology due to A. H. Clifford and G. B. Preston [3].

Theorem 1. Let S be a semigroup. Suppose that B is a bi-ideal, T is a subsemigroup of S, and the intersection $A=B \cap T$ is not empty. Then A is a bi-ideal of T.

This is a consequence of a theorem concerning (m, n)-ideals (cf. the author [7], Theorem 1).

The following result shows that the existence of proper bi-ideal (in some cases) implies that of proper left (and right) ideal.

Theorem 2. Suppose that A is a proper bi-ideal of a semigroup S, not being a left (right) ideal of S. Then the product $B S(S B)$ is a proper right (left) ideal of S.

The author proved the following statement [6].
Theorem 3. Let S be a regular semigroup. Then every bi-ideal of S is a quasi-ideal, and conversely.
K. M. Kapp [5] proved the following two results.

Theorem 4. If S is a left simple semigroup, then every bi-ideal B of S is a right ideal.

Theorem 5. Let S be a semigroup with zero. If S is left 0simple, then the sets of bi-ideals and quasi-ideals of S coincide.

The following example shows that there exists such a bi-ideal which is not quasi-ideal.

Example 1. Let S be the semigroup of four elements $0,1,2,3$ with multiplication table

	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	1
3	0	0	1	2

It is easy to see that the subsemigroup $B=\{0,2\}$ is a bi-ideal of S
which is not a quasi-ideal of S. Actually B is a two-sided ideal of the two-sided ideal $I=\{0,1,2\}$ of S, i.e. B is a 2-ideal of S (see the author [6]).

Utilizing Theorem 3, J. Dénes [4] proved the following result.
Theorem 6. In the symmetric semigroup F_{n} of transformations of a set of n elements every bi-ideal is a left ideal.

A generalization of this assertion reads as follows.
Theorem 7. Let S be a regular right duo semigroup. Then every bi-ideal B of S is a left ideal.

A semigroup S is called right duo if every right ideal R of S is two-sided.

Example 2. The semigroup S of the four elements $0,1,2,3$ with the multiplication table

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	1	2	3
3	0	1	2	3

is a regular right duo semigroup. It is easy to see that S has the property :
(P) Every non-empty subset of S is a subsemigroup.

Thus, by a theorem of L. Rédei ([10], Theorem 50), S is a chain of right zero semigroups.

Theorem 8. Let S be a regular right duo semigroup, and let A be a non-empty subset of S. Then A is an (m, n)-ideal of S if and only if it is a $(0, n)$-ideal of S.

The following result is a consequence of Theorem 8.
Theorem 9. A non-empty subset T of the symmetric semigroup F_{n} is a (p, q)-ideal of F_{n} if and only if T is a $(0, q)$-ideal of $F_{n}(p, q$ are arbitrary non-negative integers).

The next result is a criterion for a right duo semigroup to be a semilattice of groups.

Theorem 10. A right duo semigroup S is a semilattice of groups if and only if the condition
(1)

$$
B \cap I=B I
$$

holds for every bi-ideal B and every two-sided ideal I of S.
The following two theorems characterize the class of semigroups that are semilattices of groups in terms of bi-ideals.

Theorem 11. A semigroup S is a semilattice of groups if and only if the intersection of any two bi-ideals of S is equal to their product.

Theorem 12. A semigroup S is a semilattice of groups if and only if the set of bi-ideals of S is a semilattice under the multiplication of subsets.

Next the class of regular semigroups will be characterized in terms of bi-ideals.

Theorem 13. A semigroup S is regular if and only if the relation (2) $B S B=B$
holds for each bi-ideal B of S. ${ }^{1)}$
The following two results are due to J. Calais [1] [2].
Theorem 14. A semigroup S is regular if and only if each left ideal and each right ideal of S is globally idempotent, and the product $R L$ is a quasi-ideal of S for every left ideal L and every right ideal R of S.

Theorem 15. For a semigroup S the sets of bi-ideals and quasiideals coincide if and only if $B(x, y)=Q(x, y)$ for every couple x, y in S.
$B(x, y)$ and $Q(x, y)$ denote the smallest bi-ideal and quasi-ideal of S containing the elements x, y of S.

References

[1] J. Calais: Demi-groupes quasi-inversifs. C. R. Acad. Sci. Paris, 252, 23572359 (1961).
[2] -: Demi-groupes dans lesquels tout bi-idéal est un quasi-idéal. Semigroup Symposium Smolenice (1968).
[3] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. I (2nd ed.). American Mathematical Society, Providence, R. I. (1964).
[4] J. Dénes: Transformations and transformation semigroups (in Hungarian). Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 19, 247-269 (1969).
[5] K. M. Kapp: On bi-ideals and quasi-ideals. Publ. Math. Debrecen, 16, 179-185 (1969).
[6] S. Lajos: Generalized ideals in semigroups. Acta Sci. Math., 22, 217222 (1961).
[7] ——: Notes on (m, n)-ideals. I. Proc. Japan Acad., 39, 419-421 (1963).
[8] -_: On the bi-ideals in semigroups. Proc. Japan Acad., 45, 710-712 (1969).
[9] J. Luh: A characterization of regular rings. Proc. Japan Acad., 39, 741742 (1963).
[10] L. Rédei: Algebra. Erster Teil, Leipzig (1959).

[^0]
[^0]: 1) This result remains true with quasi-ideal instead of bi-ideal (cf. Luh [9]).
