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228. Markov Semigroups with Simplest Interaction. II

By YSichir5 TAKAHASHI
(Comm. by Kunihiko KODAIRA, M. $. A., Dec. 12, 1971)

We have defined the semigroup with simplest interaction in Part I.
In this Part II, we give the definition of the Markov processes with
simplest interaction, their decompositions and constructions, and final-
ly our main result, the relation to the branching Markov processes.

Q is always assumed to be a compact Husdorff space with a count-
able basis. We employ the notation of Part I.

1. Definition.
1.0. Let X------(/3, t) be a Markov process with state space Q.

whose transition semigroup (Tt)t_o maps Co(Q.) into itself and is
strongly continuous. Here Q. U{} is the one point compactifiction
of the locally compact space Q. and, or any element in C0(Q,), we
set (/) 0.

1.1. Definition. The process is called a Markov process with
simplest interaction (or briefly, process with interaction) if its transi-
tion semigroup (t)t>-O is a semigroup with simplest interaction on
Co(Q.).

The process X is assumed in this paper to be a Hunt process. Since
the non-interaction part ()t_0 of (t)t0 constructed in 3 of Part I is
dominated by the latter, it is a transition semigroup of some sub-
process (P, X) o (P, Xt) in fact, setting

1 ) R(w)= inf (" X(w)e Q} if Xo(w) e Q, n>= 1,
it follows rom Theorem 3.1. of Part I that
( 2 T()-E[(X)It<R] (tO, e Q.)
for any e C0(Q.) where 1 is the indicator unction of the set A.

1.2. Definition. The Markov time R is called first interacting
time. The Markov process (/3x, 0) is called non-interacting part.

Let X=(P, Xt) be the Markov process obtained by piecing together
the process X--. We suppose that X is conservative, which is possible
if we assume that the constant functions belong to the domain _q)(A)
of the infinitesimal generator A of (Tt)t_o in the Hille-Yosida sense.
Since (0) is degenerated, so is the transition semigroup (Tt)to Of the
process X. It is easy to verify that X is equivalent to an n independent
copies of some Hunt process x-(P, xt) with state space Q i X0 e Q
and n_> 1.

1.3. Definition. The process x is called base process o the pro-
cess with interaction X. The space Q is referred to the base space.
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We note that x is nothing but the process obtained by restricting
the state space of X to Q and that the process X itself is also referred
to the base process.

1.4. We introduce several assumptions"
( 0 P(R +c)--I for all e Q,.

I ) The constant functions belong to (A).
(II) The limit

//1q,() lim 1 ,tlQl(
t0

exists and is finite at each point e Q,Q.
(III) There exists a kernel from Q, into itself such that

P(X e X_=9)-(9,)
for any and 9 in Q, and Borel subset E of Q,.

1.. Remark. a) The kernel is called the interaction law
it exists.

b) It is easy to see that (I) implies (0) and that (II) implies (III)
under the assumption (I).

2. Decomposition.
2.1. Theorem. Under the assumptions (I) and (III), $he process

wi$h interaction X is equivalen$ 0 $he process obtained by piecing to-

ether the exp (X)g -boee X o the bae oee Xb the

Moreover i e et H-q, the it is geivetio"

( a g(,-(g,+,(g (, e
Z.Z. he above theorem is the immediate consequence of the fol-

lowing lemmas.
Lemma. Let be a continuous function on Q,. The multiplica-

tion operator . is a derivation, i.e.,
( 4 ) q. (,)- (q. ), +, (.)
holds for any and in C(Q,), if and only if there exists a continuous

function q on Q such that

( 5 (X, ..., Xn)-- q(x) +... + q(Xn)

for any n l and x, ..., x e Q.
2.. Corollary. Under the assumption (I), X is the

ex -bpoee o X with =--1 C0(.) ag (g) holg

o ome q.
Z.4. Remark. In general, R-R() is of the form rain

for some Markov time R0 o x i we set Xt(w)-(xt(wl),..., X(Wn))
where (xt(w)" 1 in} denote n independent copies of x.

Furthermore, we can prove that the processes with interaction are
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invariant under the transformation by the multiplicative functional Mt
which is given by

Mt(w) M,(w)...
Lemma. Let C eC(Q.). Under the assumption (0), the

( 6 lim 1(
t-,0

exists in the topology of uniform or simple convergence on Co(Q.)if
and only if

( 7 ) lim l(--I)g
exists in that topology, and the two limits coincide, where
( 8 ) K(c)--E[(X)].

We denote the common limit by He if it exists, and, by _q)(H) and
_q)(//), the collection of ’s for which the limit exists in the sense of
uniform and simple convergence, respectively.

2.6. Corollary. Under the assumption (II), the operator II is

defined by a nonnegative proper kernel from Q. into Q. such that, for
each n>= 1,

ll ( [J Q) on Qn.

2.7. Proposition. If and are in (II) and if . belongs
to Co(Q.), then . is also in (lI) and satisfies the relation (3).

2.8. Remark. From this proposition it follows that H is com-
pletely determined if the information of H(., E) for E Q is given.

3. Construction.
3.0. Let x-(P, xt)be a given conservative Feller process with

state space Q, q continuous function on Q, and a substochastic
kernel from Q, into Q. We define the function q on Q. by the relation
(5), the kernel by (3) with//=, and X=(P, Xt) to be the process
with state space Q. which is equivalent to n independent copies of x on
each Q.

3.1. Theorem. For a given system (x, q, r), there exists a unique
Feller process with interaction X=(Px, Xt) satisfying the following
three properties"

1) its base process is x
2) its first interaction time is distributed according to the law

exp if it is conditioned with the non-interacting part.

3) its interaction law is

3.2. Remark. The transition semigroup (Tt)t> of Xis the unique
solution of the following integral equation"
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where H-- and (Tt)z0 is the transition semigroup of the

exp -subprocess 0 of X, or equivalently to say, the semi-

group whose infinitesimal generator A is given by

AO-A--t.
if A denotes the infinitesimal generator of X... Sketch of the proof. It suffices to solve the equation (9) and
to show that the unique solution (Tt)t0 satisfies the interaction prop-
erty. This can be done by a usual successive approximation. Put,
inductively in n0,

Q,

for0 in 0(Q,) where S is the life time of X. Then T2 is non-
decreasing and converges to some Tt. The uniqueness is immediate
rom the relation (3). The interaction property is a consequence of
the property"
(11) :( .)- (:) . (/)

i+j=n

or any and .
.4. Example. Let be a substochastic kernel rom Q into Q

and q a continuous unction on Q or each n2. Suppose that
q-- q is bounded. The nonlinear equation o the following type for

n9

substochastic measures has been studied by [2] [a] [7] etc.
du (, E) Bu(t, E)

(12)
u(t, dXl)...u(t, dx)q,(x,)(=,(x,, ..., a E)--,(E))+E

n2 JQn

where B is a (dual) generator o some Markov process X with state
space Q.

This class o nonlinear equation can be linearized if we construct
the Markov process with state space Q.. In act, noting that may

be assumed to be symmetric in x, ..., x, i we put

,(3) (, E)- q() (, E)
n q()

or e Q, and Ec Q and then extend it by (3)with H=q, then the
system (x, q, ) satisfies the conditions o the theorem.

This idea o linearization can be applied to a class o nonlinear

evolution equations, or example, the Burgers’ equation or which the
"interaction law" is a differential operator. The details will be pub-
lished elsewhere.

4. Duality with branching processes.
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4.0o It is intuitively feasible that the reversed process of a process
with interaction might be a branching process. Indeed, it is true for
the case where Q is a one-point space (See 4.7). In general we have
the ollowing theorem.

4.1. Theorem. Let (Tt)t_o be the transition semigroup of a Hunt
process --(Px, Xt) with state space Q. whose transition kernel P(t,
E) exists. Suppose that there is a nonnegative Borel measure [o on
Q. of the form M*mo for some measure m on Q such that

1) T* [o <= [o for any t >_ O,
2) the measure P(t, 2,.) is absolutely continuous with respect to

[o for each t 0 and c e Q.,
3) the function

2-P(t, 2, )=_ P(t, 2, d) / lto(d)
is continuous on Q. for each t0 and 2 e Q..

Let (Tt)t_o be the dual semigroup of (Tt)t>o with respect to/0;

(14)

Then, ) (t)t_O is a branching Markov semigroup if X is a process
with interaction.

(ii) Conversely, if X is a branching process, then (t)t_O i8 a inter-
action Markov semigroup.

4.2. Remark. a) The condition 3) is merely a regularity con-
dition imposed by our formulation in Co(Q.).

b) The assumption 1) holds if go is (T*)-invariant, or equivalently,

if/0 satisfies the condition (/0, A}-0 or any in 2(A). This is the
case for the homogeneous Boltzmann equations with m0 Gaussian dis-
tributions. In particular, if the base process is trivial, i.e., if xt=Xo,

the cendition is equivalent to the following ")

(15) _’Imo(dx) mo(dxn)q(xl)7(x, xn, E)-- mo(dx)q(x)
provided that there exist the interaction law 7 and the interacting rate
q.

c) This theorem is already used implicitly in the work of S.
Tanaka [6].

4.:. Proof. Define a map J rom Co(Q.) into /(Q.) by

J(d’2)=(Sc)lo(d2,) ( e Co(Q,))
and a map J rom C(Q) into /(Q) by

Jlf(dx) f(x)mo(dx) (f e (Q)).

The inverse maps J- ndJ of J and J re defined respectively on the
range _q) and of the latters. From the assumptions, it follows that
T*(,2/I(Q.)) and the following properties"

1) This case has been studied in detail by T. Ueno (unpublished).
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(a) JM=M*JI=MR1JM
(b) J-1M* M*J-M*R*J-IM*
(c) J and J- are algebra homomorphisms (rom C(Q,) into

/(Q,) and from K) into /(Q,) respectively).
Noting that t--J-Tt*J, the theorem ollows rom an operational cal-
culus.

4.4. On the reversed process we have the ollowing:
Proposition. Let (P,,Xt) be a Feller process with interaction

such that sup E[R] +. Then the reversed process at any L-tim
xeQ

is a Markov process and its transition semigroup is in duality with that
of (P,, Xt) relative to the measure V where V is the potential operator
for (P,, Xt).

The existence of the operator V is justified by the next lemma.
4.5. Lemma. Let (Tt)t be the transition semigroup of a Feller

process with interaction. Then the following integral exists and is

finite for each e Co(Q,) and e Q,.

(16) V()-j’
and satisfies the relation

(17) sup lV0()]Sll01]( 1) sup
Qp =1 xQ

4.6. Remark. a) The potential operators V of interaction semi-
groups are characterized in C(Q,) by the relation
(lS) (V) (V+) V[(Y) ++ (V+)].

b) Under the assumption of 4.4, Tt() tends to zero ast at
each point e Q, and e C(Q,). If m is a substochastic measure on
Q with re(Q)< 1, then the total mass o the measure R*TM*m tends to
zero as $.
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