222. Euclidean Space Bundles and Disk Bundles

By Masahisa Adachi

Department of Mathematics, Kyoto University

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1971)

0. Introduction.

A useful property of the orthogonal group O(n) is that it leaves invariant the unit disk D^n and unit sphere S^{n-1} of \mathbb{R}^n . Consequently one may pass freely from \mathbb{R}^n -bundles to D^n - and S^{n-1} -bundles in the case where the structure group is O(n). This convenient coincidence does not occur in the topological category. W. Browder [2] showed that some \mathbb{R}^n -bundles do not contain any D^n -subbundles.

In this paper we shall study on the relationship between \mathbb{R}^{n} -bundles and D^{n} -bundles.

The main result of this paper is the following

Theorem 1. Let K be a locally finite simplicial complex of dimension k, and k < n-3 and $n \ge 6$. Then the set of all equivalence classes of D^n -bundles over K is canonically in one-to-one correspondence with the set of all equivalence classes of \mathbb{R}^n -bundles over K.

In § 1 we prepare on notations and terminologies used later. In § 2 we shall show the stability theorem of the homotopy groups $\pi_k(\mathcal{H}_0(n))$. Here we use the recent result of R. Kirby and L. Siebenmann [4]. In § 3 we shall prove the theorem 1.

The author is grateful to Professors N. Shimata and H. Toda for their kind criticisms.

1. Notations and terminologies.

Let $\mathcal{H}_0(n)$ be the space of all homeomorphisms of the Euclidean *n*-space \mathbb{R}^n onto itself preserving the origin 0 with compact-open topology. Then $\mathcal{H}_0(n)$ forms a topological group with the composition of maps (cf. Kister [5]).

By an \mathbb{R}^n -bundle we shall mean a fibre bundle whose fibre is the Euclidean *n*-space \mathbb{R}^n and structure group $\mathcal{H}_0(n)$.

Let $B_{\mathcal{H}_0(n)}$ be the classifying space for the topological group $\mathcal{H}_0(n)$. Its existence is assured by J. Milnor [6]. Then for a finite complex K, the set $[K, B_{\mathcal{H}_0(n)}]$ of all homotopy classes of continuous maps of K into $B_{\mathcal{H}_0(n)}$ is in one-to-one correspondence with the set of all equivalence classes of \mathbb{R}^n -bundles over K.

On the other hand, we shall denote by TOP_n the *css*-group of all isomorphism-germs of trivial microbundles over simplexes (for the precise definition, see [1]; where we write H_n for TOP_n). Let B_{TOP_n} be

the classifying css-complex for css-group TOP_n . Then for a finite complex K, the set $[\tilde{K}, B_{TOP_n}]$ of all css-homotopy classes of css-maps of css-complex \tilde{K} into B_{TOP_n} is in one-to-one correspondence with the set of all isomorphism classes of microbundles of dimension n over K, where \tilde{K} is the css-complex corresponding to K (cf. [1]).

According to J. Kister [5], any microbundle of dimension n over a finite complex contains an \mathbb{R}^n -bundle, unique up to isomorphism. Therefore, we have the following

Proposition. We have

Suppl.]

$$\pi_k(\mathcal{H}_0(n)) \cong \pi_k(TOP_n).$$

Let $\mathcal{H}_0(D^n)$ be the space of all homeomorphisms of *n*-disk D^n onto itself preserving the origin 0 with the compact-open topology. Then $\mathcal{H}_0(D^n)$ can canonically be considered as a subspace of $\mathcal{H}_0(n)$. It follows that $\mathcal{H}_0(D^n)$ also is a topological group.

By a D^n -bundle we shall mean a fibre bundle whose fibre is the *n*disk D^n and structure group $\mathcal{H}_0(D^n)$.

2. Stability theorem for the homotopy groups $\pi_k(TOP_n) = \pi_k(\mathcal{H}_0(n))$.

We have the canonical inclusion $\iota_n: TOP_n \rightarrow TOP_{n+1}$. Then ι_n induces the homomorphism

 $(\iota_n)_*: \pi_k(TOP_n) \rightarrow \pi_k(TOP_{n+1}).$

In this section we shall show the stability theorem for the homotopy groups $\pi_k(TOP_n)$.

Let PL_n be the css-group of all isomorphism-germs of PL-microbundles of dimension *n* over simplexes (cf. Milnor [7]). Then we have the canonical inclusion $\iota_n: PL_n \rightarrow PL_{n+1}$. A *PL*-microbundle can be considered to be a microbundle. Therefore, we have following csshomomorphism $\rho_n: PL_n \rightarrow TOP_n$. A. Haefliger and C. Wall [3] proved the following stability theorem.

Theorem (Haefliger and Wall). We have

$$\pi_k(PL_{n+1}, PL_n) = 0 \quad for \ k < n.$$

We have the natural css-map $TOP_n/PL_n \rightarrow TOP_{n+1}/PL_{n+1}$. Recently R. Kirby and L. Siebenmann [4] have proved the following stability.

Theorem (Kirby and Siebenmann).

 $\pi_k(TOP_n/PL_n) \cong \pi_k(TOP_{n+1}/PL_{n+1}), \quad for \ k < n, \ n \ge 5.$

From these two theorems we have the stability theorem for $\pi_k(TOP_n)$.

Theorem 2. We have

 $\pi_k(TOP_{n+1}, TOP_n) = 0, \quad for \ k < n-1, \ n \ge 5.$

Proof. We consider the commutative diagram on the next page. Then Theorem follows from the two theorems stated above by the five lemmas easily. M. Adachi

[Vol. 47,

3. Euclidean space bundles and disk bundles.

By using the stability theorem for $\pi_k(\mathcal{H}_0(n))$, we shall prove the following theorem.

Theorem 3. We have

 $\pi_k(\mathcal{H}_0(n), \mathcal{H}_0(D^n)) = 0, \quad \text{for } k < n-2, n \ge 6.$

Before we prove the theorem, let us prepare some lemmas.

Let $\mathcal{H}(S^n)$ be the space of all homeomorphisms of *n*-sphere S^n onto itself with the compact-open topology.

There is a natural restriction homomorphism $\lambda: \mathcal{H}_0(D^n) \to \mathcal{H}(S^{n-1})$. Radial extension defines a continuous homomorphism $\rho: \mathcal{H}(S^{n-1}) \to \mathcal{H}_0(D^n)$, by

$$\rho(f)(x) = ||x|| f(x/||x||), \quad \text{for } x \in D^n, x \neq 0$$

 $\rho(f)(0) = 0.$

Clearly $\lambda \circ \rho =$ identity on $\mathcal{H}(S^{n-1})$.

Thus we can consider $\mathcal{H}(S^{n-1})$ to be a subspace of $\mathcal{H}_0(D^n)$ canonically.

Lemma 1. $\rho \circ \lambda$ is homotopic to the identity on $\mathcal{H}_0(D^n)$, so that λ and ρ are inverse homotopy equivalences of $\mathcal{H}_0(D^n)$ and $\mathcal{H}(S^{n-1})$.

Proof. The homotopy is the Alexander construction. Define $H_t: \mathcal{H}_0(D^n) \to \mathcal{H}_0(D^n)$ by

$$H_t(f)(x) = \begin{cases} \|x\| f(x/\|x\|), & \text{if } \|x\| \ge 1-t, \ t < 1, \ \text{or } t = 1, \ x \neq 0, \\ (1-t)f(x/(1-t)), & \text{if } \|x\| < 1-t, \\ 0, & \text{if } t = 1, \ x = 0. \end{cases}$$

Then H_t is a homotopy of $\rho \circ \lambda$ and the identity.

Let $p, q \in S^n, p \neq q$. Then we shall denote by $\mathcal{H}_{p,q}(S^n)$ the subspace of $\mathcal{H}(S^n)$ of those elements that preserve $\{p,q\}$ pointwise. Then we have

Lemma 2. $\mathcal{H}_0(n)$ is homeomorphic to $\mathcal{H}_{p,q}(S^n)$.

Proof. There is a natural homeomorphism $\varphi : (S^n - q, p) \to (\mathbb{R}^n, 0)$. Let us define $\Phi : \mathcal{H}_{p,q}(S^n) \to \mathcal{H}_0(n)$, by $\Phi(f) = \varphi \circ f \circ \Phi^{-1}$. Then Φ gives a homeomorphism between $\mathcal{H}_{p,q}(S^n)$ and $\mathcal{H}_0(n)$.

996

Lemma 3. Let $j: \mathcal{H}_{p,q}(S^n) \to \mathcal{H}_p(S^n)$ be the inclusion map. Then j is a weak homotopy equivalence.

Proof. Let $\pi: \mathcal{H}_p(S^n) \to S^n - p$ be the map defined by $\pi(f) = f(q)$. Then $(\mathcal{H}_p(S^n), \pi, S^n - p)$ is a fibre space and its fibre has the same homotopy type as $\mathcal{H}_{p,q}(S^n)$. Thus we have the lemma.

Lemma 4. Let $i: \mathcal{H}_p(S^n) \to \mathcal{H}(S^n)$ be the inclusion map. Then i is (n-1)-connected.

Proof. Let $\pi: \mathcal{H}(S^n) \to S^n$ be a map defined by $\pi(f) = f(p)$. Then, as is shown in Browder [2], § 5, $(\mathcal{H}(S^n), \pi, S^n)$ is a fibre bundle whose fibre is $\mathcal{H}_p(S^n)$. Thus we have the lemma.

By Lemmas 2, 3, 4, we have the following

Lemma 5. The composite map

$$i \circ j \circ \Phi^{-1}$$
: $\mathcal{H}_0(n) \rightarrow \mathcal{H}(S^n)$

is (n-1)-connected.

Now we prove the theorem. Let us consider the homotopy exact sequence of the tripe $(\mathcal{H}_0(n), \mathcal{H}_0(D^n), \mathcal{H}(S^{n-1}))$:

$$\cdots \xrightarrow{\theta_*} \pi_k(\mathcal{H}_0(D^n), \mathcal{H}(S^{n-1})) \xrightarrow{i_*} \pi_k(\mathcal{H}_0(n), \mathcal{H}(S^{n-1})) \xrightarrow{j_*} \pi_k(\mathcal{H}_0(n), \mathcal{H}_0(D^n))$$
$$\xrightarrow{\theta_*} \pi_{k-1}(\mathcal{H}_0(D^n), \mathcal{H}(S^{n-1})) \xrightarrow{i_*} \cdots$$

By Lemma 1 we have $\pi_k(\mathcal{H}_0(D^n), \mathcal{H}(S^{n-1}))=0, k>0$. Therefore, we obtain that $\pi_k(\mathcal{H}_0(n), \mathcal{H}_0(D^n))$ is isomorphic to $\pi_k(\mathcal{H}_0(n), \mathcal{H}(S^{n-1}))$ for any k>0. However, by Lemma 5, $\pi_k(\mathcal{H}_0(n), \mathcal{H}(S^{n-1}))$ is isomorphic to $\pi_k(\mathcal{H}_0(n), \mathcal{H}_0(n-1))$. On the other hand, we know that $\pi_k(\mathcal{H}_0(n), \mathcal{H}_0(n-1))=0$, for $k< n-2, n\geq 6$, by Theorem 2 and Proposition. Thus we obtain the theorem.

Theorem 1 follows easily from Theorem 3.

Added in proof: Theorem 1 can be also proved by Theorem 2 and Theorem A in M. Hirsch's paper: Non linear cell bundles. Ann. of Math., Vol. 84, 373-385 (1966).

References

- [1] M. Adachi: Note on microbundles. Osaka J. Math., 3, 121-137 (1966).
- [2] W. Browder: Open and closed disk bundles. Ann. of Math., 83, 218-230 (1966).
- [3] A. Haefliger and C. Wall: Piecewise linear bundles in the stable range. Topology, 4, 209-214 (1965).
- [4] R. Kirby and L. Siebenmann: On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc., 75, 742-749 (1969).
- [5] J. Kister: Microbundles are fibre bundles. Ann. of Math., 80, 190-199 (1964).
- [6] J. Milnor: Construction of universal bundles. II. Ann. of Math., 63, 430-436 (1956).
- [7] J. Milnor: Microbundles and differentiable structures (Mimeographed Note). Princeton University (1961).