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206. Remark on Fixed Point of k.regular Mappings

By Haruo MAKI
Department of Mathematics, Wakayama University, Wakayama

(Comm. by Kinjir8 KUNUGI, M. J. A., Sept. 13, 1971)

The main purpose of this paper is to answer the question raised in
[4]. The dilation D of Euclidean n-space R defined by xkx for some
k e (0, 1) can be. extended uniquely to the n-sphere, S =RtJ {c}. If h
is a homeomorphism of S of the same topological type as D, then h is
regular except at two points. Krekjart5 [6], Homma and Kinoshita
[2] showed the converse for n--2, n-3 respectively. Husch [3] ex-
tended Homma and Kinoshita’s result for n>=6. He [4] considered the
topological characterization of the dilation in a separable infinite di-
mensional Frchet space E (i.e. in a separable infinite dimensional lo-
cally convex complete linear metric space).

In [4], Husch has the following theorems. Let h be a homeomor-
phism of E (with metric d) onto itself.

Theorem (Husch [4]). Suppose that h is k-regular at each point
of E, 0<k<l (i.e. for each e>0, there exists 8>0 such that if d(x, y)
<, then d(h=(x), h(y))<ke for each integer n).

(1) ([4], Proposition 6, p. 4) h has at most one fixed point.
(2) ([4], Theorem 1, p. 2) If the fixed point set of h, Fix (h), is

not empty, then h has the topological type of a dilation D.
(3) ([4], Theorem 2, p. 2) If Fix (h) is empty, then h has the

topological type of a translation.
In this paper we prove the following"
Theorem 1. If h is k-regular at each point of E, 0<k<l, then

h has a unique fixed point.
Hence we can eliminate the hypothesis that Fix(h) be a non empty

set in Husch’s result (2).
Every separable infinite dimensional Fr6chet space E is homeomor-

phic to the countable infinite product of lines [1]. Hence E is connect-
ed metric space. Thus we only show the following"

Lemma 2. Let h be a k-regular mapping, (0<k<l), of a com-
plete, connected metric space X onto itself. Then h has a unique fixed
point.

Before starting the proof, we recall the following definitions and
some properties [5]. Let h be a continuous mapping in a metric space
X. If for each e>0, there exists n e I+ (positive integers) such that

d(h(x), h(y)) < e for all m>n,
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then x and y are said to be asymptotic under h. (Abbreviate xy).
Then is an equivalence relation on X. Let X be the set of all equiv-
alence classes. denotes the equivalence class of x e X. The induced
mapping h" X-X is well defined as ollows. For each e X, ()
--h(x). Then we have the ollowing theorems.

Theorem :} (Kashiwagi and Maki [5], Theorem 12, p. 7). Let X be
a complete metric space. Then the continuous mapping h has a unique
fixed point if and only if the induced mapping has a unique fixed
point.

Theorem 4 ([5], Theorem 13, p. 7). Let all assumptions of Theo-
rem 3 hold. If X is a singleton, then h has a unique fixed point.

Proof of Lemma 2. Since h is k-regular at each point x, there
exists a 3(x)-neighbourhood B((x)), with center x and radius (x) such
that

if Vy e B((x)), then xy.
Let x be any point of X. By the above discussion, 2 is open in X.
And 2 is not empty. Note that 2 is a closed set in X. For suppose
{Xn} is a sequence in such that

Xna as n-+
.Since h is k-regular at a, then there exists an integer N such that

x-.a or all n>N. x, x e 2 implies x.-.x for n.
Hence we have xa, a e 2. This implies 2 is closed in X. Since X is
connected, X=. Hence X is a singleton. With the use of Theorem
4, the proof is complete. Q.E.D.

Remark 1. Theorem 1 is the answer to the question raised in [4].
The hypothesis that Fix (h) be empty can never be satisfied in Husch’s
result (3). Hence that lines should be delated from the theorem (Theo-
rein 2 [4]).

Now, suppose that there exists an everywhere dense subset Y of X.
We have the following"

Theorem ;. Let f be a k-regular mapping of a complete metric
space X onto itself. If Yx is a singleton, then f has a unique fixed
point.

Proof. We show that Xx is a singleton. Let x be any point of Y,
y any point of X-- Y. Then there exists a sequence {x} o Y such that

lim x y.

Since f is k-regular, xy ior some integer n. Clearly xx. Hence
xy if x e Y, y e X--Y. Now letx, ybeanypointsoX--Y. Then
there exist the sequences {x}, {y} such that

limx=x and limy=y.
Since x, y e Y, y, x e X-Y, then xx and yy or some integers

n, m. Since Y is a singleton, we have xy. This implies X] is a
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singleton. Q.E.D.
Remark 2. If one replaces the condition that f is k-regular with

the condition that f is continuous, then the resulting proposition need
not be true, as the ollowing example shows. Define f on the interval
X=[--/2, + oo) as follows"

f(x)--=2x+/ 2 if --.v/-<=x<= 2, f(x)=x/2+5// 2 if
f is not k-regular, 0kl, and Y is a singleton where Y=QX.
But f has two fixed points.

In the end of this paper, we give another application of Theorem
4, which treat a subject of Kannan’s fixed point theorem in metric
space.

Theorem 6. Let X be a complete metric space. Let f be a con-
tinuous mapping of X into itself such that

d(f(x), f(y)) ad(x, f(x))+ rid(y, f(y))+ yd(x, y) where x, y e X
and 0a+fl+yl, 0ga, 0gfll, 0-1. Then f has a unique

fixed point.
Proof. Let x, y be any point of X. In order to complete the

proof, we see xy. For all n we have

(a+) d(x, f(x)).d(f(x), f+(x)) 1
d(f(x), f(y))gad(f-(x), f(x))+d(fn-(y), fn(y))

+ d(f-(x), f-(y)).
Hence we have

+ [d(f(x), f(y)).
By the induction,

Let
=,

_
We have limB-0. herefore

d(f(z), f())0 as +.
his implies tha X is a singleton. By heorem 4 the roof is eom-

lete. .N.D.
Remark 3. By heorem 6, we have the Banaeh’s fixed oin

heorem and Kannan’s result [7].
Added in proof. Some changes need in heorem 8 and heorem

4. has a unique fixed oint with a Cauehy sequence {h()}, if and
only if, h has a unique fixed oint. However, we assume tha there
exists a Cauehy sequence {h()} for some . In this ease, if X is a
singleton, then h has a unique fixed oint. herefore, in this ease
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Theorem 1, Lemma 2 and Theorem 5 are valid. Thus Remark 1 and
two lines (p. 925, lines 24, 25) in this paper, should be deleted.
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